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1 Introduction

Graph kernels are one of the most important methods for graph data analysis and have been successfully
applied in diverse applications. We can generally categorize existing graph kernels into two groups:
kernels based on local sub-structures, and kernels based on global properties. The first line of research
compares sub-structures of graphs such as random walks [1], shortest paths [2], and graphlets [3].
Specifically, these kernels recursively decompose the graphs into small sub-structures, and then define
a feature map over these sub-structures for the resulting graph kernel. However, the aforementioned
approaches only consider local patterns rather than global properties, which may substantially limit
effectiveness in some applications. Equally importantly, most of these graph kernels scale poorly to
large graphs due to their at-least-quadratic complexity in the number of graphs and cubic complexity
in the size of each graph.
Another family of research is the use of geometric embeddings of graph nodes to capture global
properties, which has shown great promise, achieving state-of-the-art performance in graph classifica-
tion [4–8]. Unfortunately, these global kernel methods do not yield a valid positive-definite (p.d.)
kernel and thus delivers a serious blow to hopes of using kernel support machine. Two recent graph
kernels, the multiscale laplacian kernel [8] and optimal assignment kernel [7] were developed to
overcome these limitations by building a p.d. kernel between node distributions or through histogram
intersection. However, the majority of these approaches have at least quadratic complexity in terms of
either the number of graph samples or the size of the graph.
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Figure 1: An example of how the EMD is used to
measure the distance between a random graph and a
raw graph. Each random graph implicitly partitions
the larger raw graph through node alignments in a
low dimensional node embedding space.

In this paper, we propose a new family of graph
kernels that take into account the global prop-
erties of graphs, based on recent advances in
the distance kernel learning framework [9]. The
proposed kernels are truly p.d. kernels con-
structed from an explicit feature map given by
a transportation distance [10] between a set of
geometric node embeddings of raw graphs and
those of a distribution over random graphs. In
particular, we make full use of the well-known
Earth Mover’s Distance (EMD), computing the
minimum cost to transport a set of node embed-
dings of raw graphs onto the ones from random
graphs. To yield an efficient computation of the
kernel, we derive a Random Features (RF) ap-
proximation using a limited number of random
graphs drawn from either data-independent or data-dependent distributions. Our experiments on 9
benchmark graph kernel and social network datasets demonstrate that RGE matches or outperforms
state-of-the-art graph kernel and deep graph neural networks. In addition, RGE has shown to achieve
(quasi-)linear scalability when increasing the number of the graphs and graph size.
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2 Earth Mover’s Distance Based Global Graph Kernel

The following notation will be used throughout the paper. Let a graph be represented as a triplet
G = (V, E, `), where V = {vi}ni=1 is the set of vertices, E ⊆ (V ×V) is the set of undirected edges, and
` : V → Σ is a function that assigns labels to nodes from an alphabet in the graph. For simplicity, we
assume that each graph has n nodes, m edges, and l node labels. Let G be a set of N graphs where
G = {Gi}

N
i=1 and let Y be a set of labels corresponding to each graph in G where Y = {Yi}Ni=1.

Geometric Embeddings of Graphs. Let the geometric embeddings of a graph G be a set of vectors
U = {ui}

n
i=1 ∈ R

n×d for all nodes, where d is the size of latent embedding space. Without loss of
generality, we use the normalized Laplacian matrix L = D−1/2(D − A)D−1/2 = I − D−1/2 AD−1/2,
where the adjacency matrix Ai j = 1 if (vi, vj) ∈ E and Ai j = 0 otherwise, and D is the weighted
degree matrix. We then compute the d smallest eigenvectors of L to obtain U as its geometric
embeddings through the partial eigendecomposition of L = UΛUT . Then each node vi will be
assigned an embedding vector ui ∈ R

d corresponding to the i-th row of U.
Node Transportation via Earth Mover’s Distance. We assume now that a graph G is represented
by the bag-of-vectors {u1, u2, . . . , un}. If node vi has some number ci of outgoing edges in the
corresponding adjacency matrix A of a graph G, we denote t i = (ci/

∑n
j=1 cj) ∈ R as a normalized

bag-of-words (nBOW) weight for each node. Our goal is to measure the similarity between a pair of
graphs (Gi,G j) using a proper distance measure. We cast the task as a well-known transportation
problem [11], which can addressed using the Earth Mover’s Distance [12] defined as follows:

EMD(Gx,Gy) := min
T∈R

nx×ny
+

〈D,T〉, s.t .,T1 = t (Gx ), TT1 = t (Gy ). (1)

where T is the transportation flow matrix with Ti j denoting how much of node vi in Gx travels to
node vj in Gy , and D is the transportation cost matrix where each item Di j = d(ui, u j) denotes the
distance between two nodes measured in their embedding space. However, the EMD is expensive
to compute; its computational complexity is O(n3 log(n)), and for large graphs, n is large. More
importantly, building a kernel matrix using EMD does not lead to a positive p.d. kernel, which
impairs its use and performance.
Global Graph Kernel using EMD. The core task is to seek a way to build a positive-definite graph
kernel that can make full use of both computed geometric node embeddings for graphs and a distance
measure matching the node embeddings. Following recent work in which a distance kernel learning
framework was developed [9], we here define our global graph kernel as follows:

k(Gx,Gy) :=
∫

p(Gω)φGω (Gx)φGω (Gy)dGω,where φGω (Gx) := exp(−γEMD(Gx,Gω)). (2)

Here Gω is a random graph consisting of a number D of random nodes with their associated node
embeddings W = {wi}

D
i=1 ∈ V. p(Gω) is a distribution over the space of all random graphs of

variable graph sizes Ω :=
⋃Dmax

D=1 V
D . Then we can derive an infinite-dimensional feature map

φGω (Gx) from the EMD between Gx and all possible random graphs Gω ∈ Ω. One explanation of
how our proposed kernel works is that a small random graph can implicitly partition a larger raw
graph through node transportation (or node alignments) in the corresponding node embedding space
using EMD, as illustrated in Fig. 1.
A more formal and revealing way to interpret our kernel defined in (2) is to express it as

k(Gx,Gy) := exp
(
−γsoftminp(Gω )

{EMD(Gx,Gω) + EMD(Gω,Gy)}

)
(3)

where,

softminp(Gω )
{ f (Gω)} := −

1
γ

log
∫

p(Gω)e−γ f (Gω )dGω (4)

is a version of the soft minimum function parameterized by p(Gω) and γ. Note that Equation (4) can be
viewed as a smoothed version of the usual definition of soft minimum softmini fi := −softmaxi(− fi) =
− log

∑
i e− fi , reweighting by a probability density p(Gω) and one more parameter γ to control the

degree of smoothness. When γ is large and f (Gω) is Lipschitz-continuous, the value of (4) is mostly
determined by the minimum of f (Gω).
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Algorithm 1 Random Graph Embedding

Input: Data graphs {Gi}
N
i=1, node embedding size d, maximum length of random graphs Dmax ,

graph embedding size R.
Output: Feature matrix ZN×R for data graphs

1: Compute nBOW weights vectors {t (Gi )}N
i=1 of the normalized Laplacian L of all graphs

2: Obtain node embedding vectors {ui}
n
i=1 by computing d smallest eigenvectors of L

3: for j = 1, . . . , R do
4: Draw Dj uniformly from [1,Dmax].
5: Generate a random graph Gω j with Dj number of nodes embeddingsW from some distribution.
6: Compute a feature vector Z j = φGω j

({Gi}
N
i=1)) using EMD in Equation (2) or other distance.

7: end for
8: Return matrix Z({Gi}

N
i=1) =

1√
R
{Zi}

R
i=1

It is worth noting that EMD is a metric and thus by the triangle inequality, we have

EMD(Gx,Gy) ≤ min
Gω ∈Ω

(
EMD(Gx,Gω) + EMD(Gω,Gy)

)
(5)

and the equality holds if we allow the size of the random graph Dmax to be no smaller than L.
Therefore, the kernel (3) serves as a good approximation to the EMD between any pair of graphs Gx ,
Gy while being positive-definite by definition.
Random Graph Embedding: Approximation of Global Graph Kernel. Exact computation of
the proposed kernel in (2) is often infeasible, as it does not admit a simple analytic solution. However,
since we define our kernel in terms of a randomized kernel approximation [13], it naturally yields a
following random approximation,

k(Gx,Gy) ≈ 〈Z(Gx), Z(Gy)〉 =
1
R

R∑
i=1

φGω i
(Gx)φGω i

(Gy) (6)

where {Gω i}
R
i=1 are i.i.d. random graphs drawn from p(Gω) and Z(Gx) := ( 1√

R
φGω i

(Gx))
R
i=1 gives a

vector representation of graph Gx . We call this random approximation Random Graph Embedding
(RGE), which we will show in the next section this random approximation (6) converges to the exact
kernel (2) uniformly over all pairs of graphs (Gx,Gy).
Algorithm 1 summarizes the procedure to generate feature vectors for data graphs. There are
several important comments to make here. By efficiently approximating the proposed global graph
kernel using RGE, we enjoy the double benefits of improved accuracy and reduced computation. A
conventional evaluation of EMD has complexity O(n3log(n)) assuming that all graphs have similar
size n. In contrast, our RGE approximation only requires computation with the quasi-linear complexity
O(nlog(n)) if D is treated as a constant. This is because one evaluation of EMD only requires
O(D2nlog(n)) [14] thanks to the small size of random graphs. Recall that with a state-of-the-art
eigensolver [15, 16], we can effectively compute the d largest eigenvectors with linear complexity
O(dmz). Therefore, the total computational complexity is O(NRnlog(n) + dmz), (quasi-)linear
complexity in terms of the number of graphs N and the number of graph nodes n or graph edges m;
we will empirically assess the effective complexity in the subsequent experimental sections.

3 Experiments

We performed experiments to demonstrate the effectiveness and efficiency of the proposed method,
and compared against a total of 12 graph kernels and deep graph neural networks on 9 benchmark
datasets1 widely used for testing the performance of graph kernels.
Baselines. Due to the large literature, we only compare to 3 classical kernels [1, 3, 2]and 4
representative global kernels [6, 5, 7] related to our approach. Furthermore, we also compare
RGE against 4 recently developed deep learning approaches with node labels, including Deep
Graph Convolutional Neural Networks (DGCNN), [17]; PATCHY-SAN (PSCN) [18], Diffusion

1http://members.cbio.mines-paristech.fr/ nshervashidze/code/
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Figure 2: Test accuracies and runtime of RGE w/ and w/o node labels when varying R.

CNN (DCNN) [19], and Deep Graphlet Kernel (DGK) [20]. The first three models are built on
Convolutional Neural Networks on graphs while the last one is based on Word2Vec.
Setup. Following the convention of the graph kernel literature, we perform 10-fold cross-validation,
using 9 folds for training and 1 for testing, and repeat the whole experiments ten times (thus 100
runs per dataset) and report the average prediction accuracies and standard deviations. The ranges of
hyperparameters γ and D_max are [1e-3 1e-2 1e-1 1 10] and [3:3:30], respectively. All parameters
of the SVM and hyperparameters of our method were optimized only on the training dataset. For all
baselines we have taken the best reported number, except for EMD, where we reran the experiments
for fair comparison in terms of both accuracy and runtime.

Table 1: Comparison of classification accuracy against graph kernel methods with node labels.
Datasets PTC ENZYMES PROTEINS NCI1 NCI019
Methods Accu Accu Accu Accu Accu
RGE 61.5 ± 2.34(1s) 48.27 ± 0.99(28s) 75.98 ± 0.71(20s) 76.46 ± 0.45(379s) 74.42 ± 0.30(526s)

EMD [6] 57.67 ± 2.11 (42s) 42.85 ± 0.72 (196s) 76.03 ± 0.28 (1936s) 75.89 ± 0.16 (7942s) 73.63 ± 0.33 (8073s)
PM [6] 60.22 ± 0.86 40.33 ± 0.34 74.39 ± 0.45 72.91 ± 0.53 71.97 ± 0.15

OA-Eλ(A) [5] 58.76 ± 0.92 43.56 ± 0.66 — 69.83 ± 0.30 68.96 ± 0.35
V-OA [7] 56.4 ± 1.8 35.1 ± 1.1 73.8 ± 0.5 65.6 ± 0.4 65.1 ± 0.4
RW [1] 57.06 ± 0.86 19.33 ± 0.62 71.67 ± 0.78 63.34 ± 0.27 63.51 ± 0.18
GL [3] 59.41 ± 0.94 32.70 ± 1.20 71.63 ± 0.33 66.00 ± 0.07 66.59 ± 0.08
SP [2] 60.00 ± 0.72 41.68 ± 1.79 75.61 ± 0.45 73.47 ± 0.11 73.07 ± 0.11

Table 2: Comparison of classification accuracy against recent deep learning models on graphs.
Datasets PROTEINS NCI1 IMDB-B IMDB-M COLLAB
Methods Accu Accu Accu Accu Accu
RGE 75.98 ± 0.71 76.46 ± 0.45 71.48 ± 1.01 47.26 ± 0.89 76.85 ± 0.23

DGCNN 75.54 ± 0.94 74.44 ± 0.47 70.03 ± 0.86 47.83 ± 0.85 73.76 ± 0.49
PSCN 75.00 ± 2.51 76.34 ± 1.68 71.00 ± 2.29 45.23 ± 2.84 72.60 ± 2.15
DCNN 61.29 ± 1.60 56.61 ± 1.04 49.06 ± 1.37 33.49 ± 1.42 52.11 ± 0.53
DGK 27.08 ± 0.79 62.48 ±0.25 66.96 ± 0.56 44.55 ± 0.52 73.09 ± 0.25

Comparison with All Baselines. Tables 1, and 2 show that RGE consistently outperforms or matches
other state-of-the-art graph kernels and deep learning approaches in terms of classification accuracy
and computational time (only compared to EMD).
Impacts of R on Accuracy and Runtime of RGE. As shown in Fig. 2, all variants of RGE converge
very rapidly when increasing R from a small number (R = 4) to relatively large number.
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Figure 3: Runtime for computing node embeddings
and RGE graph embeddings, and overall runtime when
varying number of graphsN and size of graph n. (Default
values: number of graphs N = 1000, graph size n = 100,
edge size m = 200). Linear and quadratic complexity
are also plotted for easy comparison.

Scalability of RGE. Fig.3 shows the lin-
ear scalability of RGE in the number of
graphs, confirming our complexity analysis
in Section 2.

4 Conclusion and Future Work

In thiswork, we have presented a new family
of p.d. graph kernels that take into account
global properties of graphs based on an
RGE approximation. The benefits of RGE
are demonstrated by its much higher graph
classification accuracy compared with all
existing graph kernels and its (quasi-)linear
scalability in terms of the number of graphs
and graph size.
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