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Abstract

We present a dense representation for Markov Logic Networks (MLNs) that en-
codes symmetries in the MLN. Such a representation is particularly important in
the context of lifted inference algorithms that scale up by exploiting symmetries.
By leveraging advances in neural networks, we learn a novel representation for
symmetries that is hard to specify explicitly using hand-crafted features. Specifi-
cally, we learn an embedding for MLN objects that predicts the context of an ob-
ject, i.e., objects that appear along with it in formulas of the MLN, since common
contexts indicate symmetry in the distribution. Importantly, using such a formu-
lation we can adapt existing skip-gram models to learn symmetries efficiently. In
this paper, we present an overview of our approach and some experimental results
that show its promise in improving inference algorithms for MLNs.

1 Introduction

Neural embeddings have been extremely successful as a general approach to learn efficient and ef-
fective representations for a variety of real-world domains including words [16, 22], sentences [21],
knowledge graphs [18], images [12], etc. Inspired by these successes, in this paper, we present a
novel representation for Markov Logic Networks (MLNs) [8] using neural embeddings to repre-
sent symmetries in the model. Our main motivation for such a representation stems from the fact
that over the last several years, it has been widely recognized that exploiting symmetries in MLNs
(and in other statistical relational models such as PSL [4]) yields exponential improvements in the
scalability of inference algorithms. Thus, several algorithms that are collectively referred to as lifted
inference [23] algorithms have been proposed that exploit symmetries in the MLN.

However, identifying symmetries in the MLN efficiently and effectively is non-trivial. Several pre-
vious approaches [7, 33, 9, 29, 31, 34, 6, 17] have been proposed that exploit both exact and approx-
imate symmetries in inference. However, these methods are either restrictive in nature (i.e., limited
to exact symmetries) [9], or in other cases require hand-crafted features [34], or work on the graph
structure [6, 17] which can be very large in practical domains such as NLP. In this paper we seek
to leverage advances in neural networks to learn more powerful symmetry-based representations for
MLNs. Specifically, we describe a distributed representation for objects in the MLN based on the
premise that if two objects are symmetrical, they are exchangeable in ground formulas of the MLN.
Thus, a possible representation is to vectorize objects using ground formulas and learn a dense em-
bedding from these vectors. However, learning from vectors that directly encode ground formulas
is not scalable since the input representation is as big as the ground Markov network. Therefore, in-
spired by the successful skip-gram model, we propose a novel, more scalable approach that creates
an embedding based on local context information for objects. The embeddings layer will then learn
similar representations for objects that have similar contexts. Importantly, using this formulation,
we can adapt skip-gram model architectures [16] to learn the representation efficiently. Our brief ex-
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perimental evaluation shows that, performing inference in the MLN based on such a representation
yields scalable and accurate results.

2 Background

2.1 Markov Logic Networks

Markov logic networks (MLNs) are template models that define uncertain, relational knowledge as
first-order formulas with weights. Weights encode uncertainty in a formula. Given a set of con-
stants/objects that represent the domains of variables in the MLN, an MLN represents a factored
probability distribution over the possible worlds, in the form of a Markov network, where the poten-
tials are defined from the formulas grounded with the domain objects. The two common inference
problems over MLNs are marginal inference and MAP inference which are both intractable prob-
lems.

2.2 Skip-Gram Models

Skip-gram models are used to learn an embedding over words based on the context in which they
appear in the training data (i.e., nearby words). Word2vec [16] is a popular model of this type,
where we train a neural network based on pairs of words seen in the training data. That is, we
learn to predict a word based on its context or nearby words. The hidden layer typically has a much
smaller number of dimensions as compared to the input/output layers. Thus, the hidden-layer learns
a low-dimensional embedding that is capable of mapping words to their contexts. Typically the
hidden-layer output is used as features for other text processing tasks, as opposed to using hand-
crafted features.

2.3 Related Work

Lifted inference [23, 7, 9, 33] is the predominant approach to improving the scalability of inference
in relational models. Our approach is more closely related to pre-processing approaches that exploit
approximate symmetries by changing the evidence using binary matrix factorization [31] or clus-
tering. Other approaches for lifted inference identify automorphisms in graphs [6]. These methods
have been applied to marginal as well as MAP inference [3, 17]. However, since these methods
compute symmetries on the graph structure, for large practical problems, it becomes infeasible to
create the entire graph structure. More recently, Anand et al. [1] developed methods for identifying
contextual symmetries for probabilistic graphical models, and our proposed approach can be viewed
as extending this to first-order models by learning a distributed representation for these symmetries.
Finally, Rocktaschel and Riedel [25] developed subsymbolic representations and learning for logi-
cal inference operators. Specifically, they developed vector representations for logical symbols and
used them within theorem proving. Our approach can be viewed as developing representations for
probabilistic reasoning taking advantage of distributional symmetries.

3 Symmetry-based Representation Learning

Previous works have defined symmetry in terms of orbits in the automorphism groups of variables
(or atoms) in the Markov network underlying the MLN [6]. However, the number of variables in
complex MLNs tend to be extremely large. Therefore, here, we characterize symmetry of objects in
the domain of the MLN. Specifically, our task is to learn a representation such that two objects that
are symmetrical have a similar representation. One way of measuring this symmetry is to check if
we can exchange the objects in the ground formulas of the MLN without changing the distribution
represented by the MLN. Specifically, given the evidence, if the ground formulas in the MLN have
a similar truth assignment before and after the exchange, we can safely exchange the objects.

Using the above perspective, we can encode objects in terms of the truth assignment to ground
formulas and compare these encodings to determine symmetry between objects. A simple en-
coding is therefore a vector that specifies the truth assignment of each ground formula. Specifi-
cally, each object X is represented as a vector vX that specifies whether each ground formula is
True/False/unknown. For groundings where X does not appear, the vector component has a
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default value unknown, and for groundings where X appears, its truth value can be computed as
True/False/unknown given the evidence database. However, such an encoding can be extremely
large since the number of ground formulas can potentially be orders of magnitude larger than the
number of objects. For example, if the MLN formula is R(x, y) ∧ R(y, z) ⇒ R(z, x), if the domain-
size of the variables x, y and z is equal to 100, the vector to encode the truth assignment to the
ground formulas will have dimensionality equal to 1 million. Essentially, such an encoding explic-
itly represents all the potentials of the ground Markov network in vector form which is equivalent
to constructing the ground Markov network. Thus, learning a dense representation from such an
encoding (since the encoding will naturally be very sparse), leads to an extremely large input layer
in the neural network and is not a scalable solution.

Therefore, instead of encoding objects as a vector over all ground formulas, we learn the dense rep-
resentation in a more scalable way inspired by the skip-gram model which is widely used in word
embeddings. The main idea in our approach is to train a neural network that predicts objects from
other objects. Specifically, borrowing terminology from skip-gram models, we seek to predict the
context of an object. The hidden layer of the neural network learns to represent the input object
vectors in a reduced dimension such that objects that appear in similar contexts are placed close
together in the embedded space. To do this, we vectorize an object X as a one-hot encoding rep-
resented by vector vX . Note that, this encoding will be orders of magnitude smaller than a vector
representing the ground formulas of the MLN. That is, the size of this encoding is bounded by the
largest domain-size in the MLN.

To learn an embedding from the one-hot encoding of objects, for every ground formula satisfied
by the evidence, we predict a vector corresponding to an object in that formula given a vector of
another object in that formula. To draw an analogy to skip-gram models, we refer to objects that
appear together in satisfied formulas as appearing in the context of each other. Specifically, let f1
. . . fK denote the ground formulas, let Oi represent the objects in fi, and let oij represent the j-th
object in the i-th formula (according to some canonical ordering of predicates in the formulas). The
representation learner seeks to maximize,

K∑
i=1

|Oi|∑
j=1

∑
−c≤k≤c;k 6=0

logP (oij+k|oij)

Specifically, c defines a sliding window-size over the objects in Oi. Here, P (oij+k|oij) is defined as
a softmax function proportional to exp(v

′>
oij+k

voij ), where vo refers to the input vector representation
for object o, and v′o refers to its output vector representation. An example of specifying the training
data to learn the embedding is shown below.
Example 1. Consider a simple formula R(x) ∧ S(x, y). Let ∆x = {X1, X2, X3} and ∆y =
{Y1, Y2}. Assume a closed world with the evidence database R(X1), R(X2), R(X3), S(X1, Y1),
S(X2, Y1), S(X3, Y2). The training instances include, vX1 , vY1 ; vX2 , vY1 ; vX3 , vY2 ;. That is, given
X1 or X2 at the input layer, we predict Y1 at the output layer, and given X3 as input we predict Y2

as the output layer. This means that the hidden layer in the model will derive features such that X1

and X2 will make common predictions at the output layer. At the same time, since X3 has a different
context, it needs to predict Y2 at the output layer, and therefore, the hidden layer encoding for X3

will be different from that of X1 and X2.

However, defining context of an object only in satisfied ground formulas has limitations when the
evidence is very sparse. In such cases, very few ground formulas may be satisfied. For example,
consider an MLN R(x) ∧ S(x, y) ∧ T(y), with evidence R(X1), S(X1, Y1), R(X2), S(X2, Y1),
S(X2, Y2). Since none of the ground formulas are satisfied by the evidence, we are unable to de-
tect any symmetries in this case, even though symmetries may exist on partially satisfied formulas.
To account for sparse evidences, we make a closed world assumption, where unknown atoms are
assumed false in partially satisfied formulas, and then compute the contexts as before.

4 Experiments

We present some brief results of our experiments to evalute the effectiveness of the embedding in
the context of inference. Specifically, we used the Gensim package [24] to learn the object embed-
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Figure 1: Average KL-divergence between the original marginals (before domain reduction) and approximate
marginals (after domain reduction)

dings. We then sampled objects from the domains of the MLN by selecting an object and removing
all its neighbors in the embedded space. Essentially, the selected object represents all its neigh-
boring objects in the embedded space. We reduce the size of the MLN domains, and modify the
evidence database based on these new domains. We then performed inference using this modified
evidence, and projected the inference results obtained on the modified MLN to the variables of the
original MLN (we skip the details due to lack of space). To perform inference, we used Tuffy [20],
a state-of-the-art inference system for MLNs to compute marginal probabilities of query variables,
and projected the marginal probabilities to the original MLN variables. We compared our approach
(NE) with Venugopal and Gogate’s [34] approach (VG) that compresses the MLN using K-Means
clustering with features based on counts of atoms satisfied by the evidence and Binary Matrix Fac-
torization (BMF) [31] that pre-processes binary evidence with a low-rank approximation. We also
added a baseline method that reduces the evidence database by randomly sampling the evidence
atoms in the evidence, which we refer to as Random. For NE, we set the hidden layer to have 300
neurons (a typical size recommended for word embeddings [16]).

We computed the average KL-Divergence for the marginal probabilities computed for the query
variables, where the divergence is measured w.r.t the marginal probabilities obtained when we per-
form inference using the full evidence (no domain reduction). We measured the KL-Divergence for
different amounts of compressions (CR), i.e., the average of the ratios of original-domain-size and
new-domain-size (after domain-reduction) across all domains. For BMF, achieving the right CR was
not possible since changing rank does not change the CR. Therefore for BMF, we varied rank from
20 to 100 (30 is the fault value in the NIMFA implementation of BMF), which is similar to the
ranks used in [31], and report the best results across the ranks. Fig. 1 shows our results for three
benchmarks taken from Alchemy [13]. However, Tuffy gets struck in grounding the MLN when the
amount of evidence is very large to process. Therefore, we sample the evidences in the benchmarks
and subsample it (10% of their original evidence database) to obtain our results. As shown in Fig. 1,
NE outperformed the the other methods on two of the benchmarks in terms of accuracy. On the
Webkb benchmark, NE performed worse than VG at lower values of CR, but was more consistent
in terms of trade-off between CR and accuracy, with accuracy improving as we increased CR. Note
that, randomly sampling the domains of the MLN without considering their symmetries performs
very poorly as compared to all methods that take advantage of symmetries when modifying the
original evidence.

5 Conclusion

In this paper, we proposed a novel subsymbolic representation for MLNs that is based on symmetries
in the underlying model. The main motivation for this representation was that leveraging symmetries
is crucial to scaling up inference in MLNs. We proposed an efficient way to learn the symmetry-
based representation by predicting objects in the context of other objects in the MLN akin to skip-
gram based word embeddings. Though our experiments demonstrated the promise of the proposed
approach in lifted inference, the general idea of learning an embedding-based representation for
MLNs can be useful in weight learning, transfer learning, etc.
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