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Abstract

Random projections reduce the dimension of a set of vectors while preserving
structural information, such as distances between vectors in the set. This paper
proposes a novel use of row-product random matrices [18] in random projection,
where we call it Tensor Random Projection (TRP). It requires substantially less
memory than existing dimension reduction maps. The TRP map is formed as
the Khatri-Rao product of several smaller random projections, and is compatible
with any base random projection including sparse maps, which enable dimension
reduction with very low query cost and no floating point operations. We also
develop a reduced variance extension. We provide a theoretical analysis of the bias
and variance of the TRP, and a non-asymptotic error analysis for a TRP composed
of two smaller maps. Experiments on both synthetic and MNIST data show that our
method performs as well as conventional methods with substantially less storage.

1 Introduction

Random projections (RP) are commonly used to reduce the dimension of collections of high dimen-
sional vectors, enabling a broad range of modern applications [23, 7, 2, 5, 9, 10]. In the context
of large-scale relational databases, these maps enable applications like information retrieval [17],
similarity search [20, 12], and privacy preserving distributed data mining [15]. Consider the problem
of detecting plagiarism. We might attempt to solve this problem by comparing the similarity of
word-level n-gram profiles for different pairs of documents [3]. To avoid tremendous query cost of
this procedure, which scales quadratically with the number of documents, we may instead reduce the
dimension of the data vector with a random projection, and cluster the resulting low-dimensional
vectors. However, if the dimension of the vectors before reduction (here, the size of the lexicon)
is too big, the storage cost of the random map is not negligible. Furthermore, even generating the
pseudo-random numbers used to produce the random projection is expensive [16].

To reduce the storage burden, we propose a novel use of the row-product random matrices in random
projection, and call it the Tensor Random Projection (TRP), formed as the Khatri-Rao product of a
list of smaller dimension reduction maps. We show this map is an approximate isometry, with tunable
accuracy, and hence can serve as a useful dimension reduction primitive. Furthermore, the storage
required to compress d dimension vectors scales as N

?
d where N is the number of smaller maps used

to form the TRP. We also develop a reduced variance version of the TRP that allows separate control
of the dimension of the range and the quality of the isometry.

Dimension Reduction Map A function f from Rd Ñ Rkpk ! dq is called a dimension reduction
map (DRM) if it approximately preserves the pair-wise distances. More precisely, we call f a
ε-Johnson-Lindenstrauss (JL) transform if for any ε ą 0 and for any two points u,v in a discrete set
X Ď Rn, we have

p1´ εq}u´ v}2 ď }fpuq ´ fpvq}2 ď p1` εq}u´ v}2

˚Both authors contributed equally.
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The well-known JL Lemma [11] claims for k “ Oplogp|X |q{ε2q, an ε-JL transform exists. In fact,
the proof shows that a suitable random linear map is an ε-JL transform with high probability.

The simplicity of linear maps makes them a favorite choice for dimension reduction. A linear map
fpxq “ Ax for A Ď Rdˆk is a good DRM if has the following properties:

1. Expected Isometry. In expectation, the map A is an isometry: E}Ax}2 “ }x}2.
2. Vanishing Variance. Varp}Ax}2q decays to zero as k increases. The variance measures the

deviations from isometry, and serves as a quality metric for the DRM.
3. Database-Friendly. A map is database-friendly if it uses not-too-much storage (and so fits

in memory), can be applied to a vector with relatively few queries to vector elements (and
so uses few database lookups), and is computationally cheap to construct and apply.

Lemma A.1 in Appendix A shows any linear map that is an expected isometry with vanishing variance
is a ε´JL transform with high probability, for sufficiently large k.

Sparse random maps for low memory dimension reduction were first proposed by [1], and further
work has improved the memory requirements and guarantees of these methods [14, 6]. Most closely
related to our work is Rudelson’s foundational study [18], which considers how the spectral and
geometric properties of the random maps we use in this paper resemble a random map with iid
entries, and shows that their largest and smallest singular values are of the same order. These results
have been widely used to obtain guarantees for algorithmic privacy, but not for random projection.
Battaglino et al. [4] use random projections of Khatri-Rao products to develop a randomized least
squares algorithm for tensor factorization; in contrast, our method uses the (full) Khatri-Rao product
to enable random projection. Sparse random projections to solve least squares problems were also
explored in [21] and [22]. To our knowledge, this paper is the first to consider using the Khatri-Rao
product for low memory random projection.

1.1 Notation

We denote scalar, vector, and matrix variables, respectively, by lowercase letters (x), boldface
lowercase letters (x), and boldface capital letters (X). Let rN s “ t1, . . . , Nu. For a vector x of
size n, we let }x}q “ p

řn
i“1 x

q
i q

1{q be its q norm for q ě 1. For a matrix X, we denote its ith

row, jth column, and the pi, jqth element as Xpi, .q, Xp., jq, and Xpi, jq. We let AdB denote the
Khatri-Rao product, A P RIˆK ,B P RJˆK , i.e. the “matching column-wise” Kronecker product.
The resulting matrix of size pIJq ˆK is given by:

AdB “

»

—

–

Ap1, 1qBp¨, 1q ¨ ¨ ¨ Ap1,KqBp¨,Kq
...

. . .
...

ApI, 1qBp¨, 1q ¨ ¨ ¨ ApI,KqBp¨,Kq

fi

ffi

fl

. (1.1)

2 Tensor Random Projection

We seek a random projection map to embed a collection of vectors X Ď Rd into Rk with k ! d. Let
us take d “

śN
n“1 dn, motivated by the problem of compressing (the vectorization of) an order N

tensor with dimensions d1, . . . , dN . Conventional random projections use Opkdq random variables.
Generating so many random numbers is costly; and storing them can be costly when d is large. Is so
much randomness truly necessary for a random projection map?

To reduce randomness and storage requirements, we propose the tensor random projection (TRP):

fTRPpxq :“ pA1 d ¨ ¨ ¨ dAN q
Jx, (2.1)

where each Ai P Rdiˆk, for i P rN s, can be an arbitrary RP map and A :“ pA1 d ¨ ¨ ¨ dAN q
J.

We call N the order of the TRP. We show in this paper that the TRP is an expected isometry, has
vanishing variance, and supports database-friendly operations.

The TRP requires only k
řN
i“1 di random variables (or k N

?
d by choosing each di to be equal), rather

than the kd random variables needed by conventional methods. Hence the TRP is database friendly: it
significantly reduces storage costs and randomness requirements compared to its constituent DRMs.
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In large scale database settings, where computational efficiency is critical and queries of vector
elements are costly, practitioners often use sparse RPs. Let δ be the proportion of non-zero elements
in the RP map. To achieve a δ-sparse RP, a common construction is the scaled sign random map: each
element is distributed as p´1{

?
δ, 0, 1{

?
δq with probability pδ{2, 1´ δ, δ{2q. [1] proposed δ “ 1{3,

while [14] further suggests a sparser scheme with δ “ 1{
?
d that he calls the Very Sparse RP.

To further reduce memory requirements of random projection, we can form a TRP whose constituent
submatrices are generated each with sparsity factor δ, which leads to a δN -sparse TRP. Under sparse
setting, it is a p1{3qN sparse TRP while under very sparse setting, it is a 1{

?
d sparse TRP. Both

TRPs can be applied to a vector using very few queries to vector elements and no multiplications.
Below, we show both sparse and very sparse TRP are low-variance approximate isometry empirically.

Variance Reduction One quirk of many DRMs is that the variance of the map is controlled by the
range k of the map. However, with the TRP we can reduce the variance without increasing k. We
propose the TRP(T), a scaled average of T independent TRPs we call replicates, defined as

fTRP(T)pxq :“
1
?
T

T
ÿ

t“1

f
ptq
TRPpxq. (2.2)

(Note that the average of T TRPs is not itself a TRP.) We discuss theoretical properties of this map in
the main theory section below.

3 Main Theory

In this section, we will show the TRP and TRP(T) are expected isometries with vanishing variance.
We provide a rate for the decrease in variance with k. We also prove a non-asymptotic concentration
bound on the quality of the isometry when N “ 2. Without loss of generality, we state our results
only for the TRP(T), since the TRP follows as a special case with T “ 1. We begin by showing the
TRP(T) is an approximate isometry.

Lemma 3.1. Fix x P R
śN

n“1 dn . Form a TRP(T) of order N composed of k independent matrices
whose columns are independent random vectors of mean zero in isotropic positions, i.e. with identity
covariance matrix. Then,

E}fTRP(T)pxq}
2 “ }x}2.

Interestingly, Lemma 3.1 does not require elements of An to be i.i.d.. Now we present an explicit
form for the variance of the isometry.

Lemma 3.2. Fix x P R
śN

n“1 dn . Form a TRP(T) of order N with range k independent matrices
whose entries are i.i.d. with mean zero, variance one, and fourth moment ∆. Then

Varp}fTRP(T)pxq}
2q “

1

Tk
p∆N ´ 3q}x}44 `

2

k
}x}42.

We can see the variance increases with N . In the N “ 1 Gaussian case, this formula shows a variance
of 2{k}x}42, which agrees with the classic result. Notice the TRP(T) only reduces the first term in the
variance bound: as T Ñ 8, the variance converges to that of a Gaussian random map. Finally we
show a non-asymptotic concentration bound for N “ 2. We leave the parallel result for N ě 3 open
for future exploration.
Theorem 3.3. Fix x P Rd1d2 with sub-Gaussian norm ϕ2. Form a TRP(T) of order 2 with range
k composed of two independent matrices whose entries are drawn i.i.d. from a sub-Gaussian
distribution with mean zero and variance one. Then there exists a constant C depending on ϕ2 and a
universal constant c1 so that

P
`
ˇ

ˇ}fTRPpxq}
2 ´ }x}22

ˇ

ˇ ě ε}x}2
˘

ď C exp

„

´c1

´?
kε
¯1{4



,

Here ϕ2 is the sub-Gaussian norm defined in Definition D.1 in Appendix A. Theorem 3.3 shows that
for a TRP to form an ε-JL DRM with substantial probability on a dataset with n points, our method
requires k “ Opε´2 log8 nq while conventional random projections require k “ Opε´2 log nq.
Numerical experiments suggest this bound is pessimistic.
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Gaussian Sparse Very Sparse
RP 0.1198 (0.0147) 0.1198 (0.0150) 0.1189 (0.0108)
TRP 0.1540 (0.0290) 0.1609 (0.0335) 0.1662 (0.0307)
TRP(5) 0.1262 (0.0166) 0.1264 (0.0194) 0.1276 (0.0164)

Table 1: RMSE for the estimate of the pairwise inner product of the MNIST data, where standard
error is in the parentheses.

4 Experiment

In this section, we compare the quality of the isometry of conventional RPs, TRP, and TRP(5), for
Gaussian, Sparse [1], and Very Sparse random maps [14] on both synthetic data and MNIST data.
We also use TRP and TRP(5) to compute pairwise cosine similarity (Table 1 and Appendix B) and to
sketch matrices and tensors (Appendix C), although the theory still remains open.

Our first experiment evaluates the quality of the isometry for maps Rd Ñ Rk. We generate n “ 10
independent vectors x1, . . . ,xn of sizes d “ 2500, 10000, 40000 from N p0, Iq. We consider the
following three RPs: 1. Gaussian RP; 2. Sparse RP [1]; 3. Very Sparse RP [14]. For each, we
compare the performance of RP, TRP, and TRP(5) with order 2 and d1 “ d2. We evaluate the methods
by repeatedly generating a RP and computing the reduced vector, and plot the ratio of the pairwise
distance 1

npn´1q

ř

něi‰jě1
}Axi´Axj}2
}xi´xj}2

and the average standard deviation for different k averaged
over 100 replications. In the MNIST example, we choose the first n “ 50 vectors of size d “ 784,
normalize them, and perform the same experiment. Figure 1 shows results on simulated (d “ 2500)
and MNIST data for the Gaussian and Very Sparse RP. See Section B for additional experiments.

These experiments show that to preserve pairwise distance and cosine similarity, TRP performs nearly
as well as RP for all three types of maps. With only five replicates, TRP(5) reduces the variance
significantly in real data while not much in the simulation setting. The difference in accuracy between
methods diminishes as k increases. When d “ d1d2 “ 40000, the storage for TRP(5) is still 1

20 of
the Gaussian RP. The variance reduction is effective especially in sparse and very sparse setting.
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Figure 1: Isometry quality for simulated and MNIST data. The left two plots show results for
Gaussian and Very Sparse RP, TRP, TRP(5) respectively applied to n “ 20 standard normal data
vectors in R2500. The right two plots show the same for 50 MNIST image vectors in R784. The
dashed line shows the error two standard deviations from the average ratio.

5 Conclusion

The TRP is a novel dimension reduction map composed of smaller DRMs. Compared to its constituent
DRMs, it significantly reduces the requirements for randomness and for storage. Numerically, the
variance-reduced TRP(5) method with only five replicates achieves accuracy comparable to the
conventional RPs for 1{20 of the original storage. We prove the TRP and TRP(T) are expected
isometries with vanishing variance, and provide a non-asymptotic error bound for the order 2 TRP.

For the future work, we will provide a general non-asymptotic bound for the higher order TRP and
develop the theory relevant for the application of the TRP in sketching low-rank approximation, given
its practical effectiveness (shown in Appendix C).
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Appendix A Proof for Main Theorems

Before presenting the proof for the main theory, we first define some new notations. Since these
notations will only be used in technical proofs, we do not include them in the main body.

Notations for Technical Proofs

For a vector x with length
śN
n“1 dn, for simplicity, we introduce the multi-index for it: let

xr1,¨¨¨ ,rN ,@rn P rdns, represents the p1 `
řN
n“1prn ´ 1qsnq

th element, where sn “
śN
n`1 dn,

for n ă N and 1 for n “ N . For vector r1, r2, we say r1 “ r2 if and only if all their elements are
the same.

Also, we let vecpAq be the vectorization operator for any matrix A P Rdˆk, which stacks all columns
of matrix A and returns a vector of length kd, rAp¨, 1q; ¨ ¨ ¨ ; Ap¨, kq; s. Here we use semi-colon to
denote the vertical stack of vectors x and y as rx; ys. As comparison, we use comma to mean stack
row vector horizontally like rxJ,yJs.

Proof for Lemma 3.1

Proof. We first give a sufficient condition for general random matrix to let (3.1) be held, then we show
that Khatri-Rao map with condition in Lemma 3.1 satisfies these two general sufficient conditions.

Consider a general random matrix A P Rkˆd and x P Rd. we claim if EA2pr, sq “ 1,@r, s and
EApr, s1qApr, s2q “ 0,@r P rks, s1 ‰ s2 P rds, then E} 1?

k
y}22 “ }x}

2
2, when y “ Ax. To see

why, it suffices to show that Ey2
r “ }x}

2
2.

Ey2
r “ E

d
ÿ

s1“1

d
ÿ

s2“1

Apr, s1qApr, s2qxs1xs2

“

d
ÿ

s“1

A2pr, sqx2
s “ }x}

2
2,

where the first equation in the second line comes from the fact that EApr, s1qApr, s2q “ 0 for
s1 ‰ s2 and the second equation in the second line comes from that EA2pr, sq “ 1.

Then, we will prove Lemma 3.1 by induction. We first show that for two matrices B1 P

Rd1ˆk,B2 P Rd2ˆk whose entries satisfy the two conditions in lemma 3.1: EB2
npr, sq “ 1 and

ErBnpr1, sqBnpr2, sqs “ 0 for n “ 1, 2, s P rds, r, r1 ‰ r2 P rdns, we have A “ pB1 d B2q
J

satifies the two sufficient conditions stated previously. It suffices to restrict our focus to the first row
of Ω and we apply the multi-index to it. For any 1 ď r1 ď d1, 1 ď r2 ď d2,

EA2
1pk1, k2q “ EB2

1pk1, 1qB
2
2pk2, 1q

“ EB2
1pk1, 1qEB2

2pk1, 1q “ 1. pindependence bewteen Bi, i “ 1, 2q

To avoid confusion in notation, we argue that Ap1, ¨q is the first row vector of A of size d1d2,
and we apply the multi-index to it. Also, for two different elements in the first row of A:
A1pk1, k2qA1ps1, s2q at least one of k1 ‰ s1, k2 ‰ s2 hold. Without losing generality, assum-
ing k1 ‰ s1,

EA1pk1, k2qA1ps1, s2q “ EB1pk1, 1qB2pk2, 1qB1ps1, 1qB2ps2, 1q

“ EE rB1pk1, 1qB1pk2, 1qB2pk2, 1qB2ps2, 1q | B2pk2, 1qB2ps2, 1qs

“ EB2pk2, 1qB2ps2, 1qE rB1pk1, 1qB1ps1, 1qs “ 0,

where we use the fact that entries within/across Bi are independent with each other and have zero
expectation.

Notice that two conditions for A “ pB1dB2q
J directly show that B1dB2 satisfies two conditions

in Lemma 3.1, we could use a standard mathematical induction argument to finish the proof for fTRP.
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For TRP(T),

E}fTRP(T)pxq}
2
2 “

1

T
E}

T
ÿ

t“1

f
ptq
TRPpxq}

2
2

“
1

T

T
ÿ

t“1

E}f ptqTRPpxq}
2
2 “ }x}

2
2,

where in the second line we use the fact that each f ptqTRP is independent with each other.

Next we introduce a lemma which shows that by bounding the deviation for the norm square of each
vector, we could also bound the deviation for inner product. Although it is commonly known in any
random projection literature, for completeness, we still list the lemma with proof here.
Lemma A.1. For a linear mapping from Rd Ñ Rk: fpxq “ 1?

k
Ωx,

Pp|xfpxq, fpyqy ´ xx,yy| ě ε|xx,yy|q ď 2 sup
xPRd

Pp|}fpxq}2 ´ }x}2| ě ε}x}22q.

Proof. Since f is a linear mapping, we have
4fpxqfpyq “ }fpx` yq}22 ´ }fpx´ yq}22.

Consider the event

A1 “
 

|}fpx` yq}22 ´ }x` y}22| ě ε}x` y}22
(

A2 “
 

|}fpx´ yq}22 ´ }x´ y}22| ě ε}x´ y}22
(

On the event AA1 XAA2,

4fpxqfpyq ě p1´ εqpx` yq2 ´ p1` εqpx´ yq2 “ 4xx,yy ´ 2εp}x}2 ` }y}2q,

noticing }x}2 ` }y}2 ě 2xx,yy, and by similar argument on the other side of the inequality, we
could claim that

t|xfpxq, fpyqy ´ xx,yy| ě ε|xx,yy|u Ď A1 YA2.

Then we finish the proof by simply applying an union bound of two events.

Remark. The key element of classic random projections is the dimension-free bound. Similarly,
according to Prop. 3.3, our TRP has a norm preservation bound independent of the particular vector
x and dimension d and thus a dimension-free inner product preservation bound according to Lemma
A.1.

Proof for Lemma 3.2

Proof. Let y “ Ax. We know from Lemma 3.1 that E}fTRPpxq}
2
2 “

1
kE}Ax}2 “ }x}22. Notice

Ep}fTRP(T)pxq}
2
2q “ }x}

2
2,

and Ey2
1 “ }x}

2
2 as shown in the poof of Lemma 3.1. It is easy to see that

E}y}42 “
k
ÿ

i“1

Ey4
i `

ÿ

i‰j

Ey2
i y

2
j .

Again, as shown in Lemma 3.1, Ey2
i y

2
j “ Ey2

i Ey2
j “ }x}

4. To find E}y}42, it suffices to find Ey4
1 by

noticing that yi are i.i.d. random variables. Let Ω be the set containing all corresponding multi-index
vector for t1, ¨ ¨ ¨ ,

śN
n“1 dnu.

y4
1 “

«

ÿ

rPΩ

Ap1, rqxr

ff4

“
ÿ

rPΩ

A4p1, rqx4
r ` 3

ÿ

r1‰r2PΩ

A2p1, r1qx
2
r1A

2p1, r2qx
2
r2

` 6
ÿ

r1‰r2‰r3PΩ

A2p1, r1qxr1Ap2, r2qxr2Ap3, r3qxr3 ` 4
ÿ

r1‰r2PΩ

A3p1, r1qx
3
r1Ap1, r2qxr2

`
ÿ

r1‰r2‰r3‰r4PΩ

Ap1, r1qxr1Ap1, r2qxr2Ap1, r3qxr3Ap1, r4qxr4 .
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It is not hard to see that except for the first line, the expectation of second and third line is zero.

EA4p1, rq “ EA4
1p1, r1q ¨ ¨ ¨A

4
N p1, rN q “ ∆N .

Also with proof in Lemma 3.1,

EA2p1, r1qA
2p1, r2q “ EA2p1, r1qEA2p1, r2q “ 1.

Combining these two together, we have

E}fTRPpxq}
4 “

1

k2

“

kp∆N ´ 3q}x}44 ` 3k}x}42 ` pk ´ 1qk}x}42
‰

“
1

k

“

p∆N ´ 3q}x}44 ` 2}x}42
‰

` }x}42.

Therefore,

Varp}fTRPpxq}
2
2q “ E}fTRPpxq}

4
2 ´ pE}fTRPpxq}

2
2q

2 “
1

k

“

p∆N ´ 3q}x}44 ` 2}x}42
‰

.

Now we switch to see how much variance could be reduced by the variance reduction method. With
Lemma 3.1, we already know that E}fTRP(T)pxq}

2
2 “ }x}

2
2. The rest is to calculate E}fTRP(T)pxq}

4
2

out.

}fTRP(T)pxq}
4
2 “

1

T 2

«

T
ÿ

t“1

}f
ptq
TRPpxq}

2
2 `

ÿ

t1‰t2

xf
pt1q
TRP pxq, f

pt2q
TRP pxqy

ff2

“
1

T 2

«

T
ÿ

t“1

}f
ptq
TRPpxq}

4
2 `

ÿ

t1‰t2

}f
pt1q
TRP pxq}

2
2}f

pt2q
TRP pxq}

2
2 ` 2

ÿ

t1‰t2

xf
pt1q
TRP pxq, f

pt2q
TRP pxqy

2 ` rest

ff

.

It is not hard to show that Eprestq “ 0. Following the definition of y,

E}f pt1qTRP pxq}
2
2}f

pt2q
TRP pxq}

2
2 “ }x}

4
2,

and
Exf pt1qTRP pxq, f

pt2q
TRP pxqy

2

“
1

k2
E

«

k
ÿ

i“1

y
pt1q
i y

pt2q
i

ff2

“
1

k
Erypt1q1 y

pt2q
1 s2 “

1

k
}x}42.

Combining all these together, we could show that

Varp}fTRP(T)pxq}
2
2q “ E}fTRP(T)pxq}

4
2 ´ pE}fTRP(T)pxq}

2
2q

2

“
1

T 2

„

T

k

“

p∆N ´ 3q}x}44 ` 2}x}42
‰

`T pT ´ 1q}x}42 ` T }x}
4
2 `

2T pT ´ 1q

k
}x}42



´ }x}42

“
1

Tk
p∆N ´ 3q}x}44 `

2

k
}x}42.

Definition A.1. A random variable x is said to satisfy the generalized-sub-exponential moment
condition with constant α, if for general positive integer k, there exists a general constant C(not
depending on k), s.t.

E|x|k ď pCkqkα (A.1)

Proof for Theorem 3.3

Proof. From now on, with losing generality, we will assume }x} “ 1. Let

y “
1
?
k
pA1 dA2q

Jx,

9



Lemma 3.1 asserts that E}y}22 “ }x}22 (conditions in lemma 3.1 naturally hold for i.i.d. random
variables in our setting). The key observation is that yi, i P rks is quadratic form of elements of
Ai, i “ 1, 2. Then as quadratic form of sub-Gaussian variables, yi are identically independently dis-
tributed generalized sub-exponential random variable. Then we could use Hanson-Wright inequality
to determine the constants in moments condition A.1 which shall present tighter bound compared to
directly citing results of linear combination of sub-exponential random variable defined in (A.1)

We aim to write yi as a quadratic form of zi :“ rvecpA1p¨, iqq; vecpA2p¨, iqqs. Also, for convenience,
we partition x into d1 sub-vectors with equal length d2 i.e., x “ rx1; ¨ ¨ ¨ ; xd1s. To make it clear, we
consider writing y1 as quadratic form of z1 first.

y1 “ xrA1p1, 1qA2p¨, 1q; ¨ ¨ ¨ ; A1pd1, 1qA2p¨, 1qs, rx1; ¨ ¨ ¨ ; xd1sy

which indicates that we could write
y1 “ zJ1 Mz1,

where

M “

„

0 D
0 0



D “

»

—

–

xJ1
...

xJd1 .

fi

ffi

fl

It is easy to see that }M} ď }D} ď }D}F “ }M}F “ 1 by assuming }x} “ 1. Then applying the
Hanson Wright inequality in Lemma D.1, we could have for any positive number η, there exists a
general constant c1 s.t.

Pp|yi| ě ηq ď 2 exp

„

´c1 min

"

´
η

ϕ2
2}M}

,
η2

ϕ4
2}M}

2
F

*

ď 2 exp

„

´c1 min

"

´
η

ϕ2
2

,
η2

ϕ4
2

*

.

Then by Lemma D.2, we could find a constant C depending on sub-Gaussian norm and general
constant c1 s.t.

E|yi|k ď pCkqk,
where in fact we could give the explicit form of C as

C “ 1`
c1

min tϕ2
2, ϕ

4
2u
. (A.2)

Notice yi has mean zero and variance 1 (assuming }x} “ 1), then apply Lemma D.3, we could assert
that there exists a general constant c2

P
ˆ
ˇ

ˇ

ˇ

ˇ

1

k
yJIk,ky ´ 1

ˇ

ˇ

ˇ

ˇ

ě ε

˙

ď C exp

ˆ

´c2

”?
kε
ı1{4

˙

,

where C is defined in (A.2) and we use the fact α “ 1 in our case which is defined in moments
condition.
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Appendix B More Simulation Results

Pairwise Distance Estimation In Figure 2, 3, 4, we compare the performance of Gaussian,
Sparse, Very Sparse random maps on the pairwise distance estimation problem with d “

2500, 10000, 40000, N “ 2. Additionally, we compare their performance for d “ 125000, N “ 3 in
Figure 5.
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Figure 2: Average ratio of the pairwise distance for simulation data using Gaussian RP: The
plots correspond to the simulation for Gaussian RP, TRP, TRP(5) respectively with n “ 20, d “
2500, 10000, 40000 and each data vector comes from Np0, Iq. The dashed line represents the error
bar 2 standard deviation away from the average ratio.
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Figure 3: Average ratio of the pairwise distance for simulation data using Sparse RP: The
plots correspond to the simulation for Sparse RP, TRP, TRP(5) respectively with n “ 20, d “
2500, 10000, 40000 and each data vector comes from Np0, Iq. The dashed line represents the error
bar 2 standard deviation away from the average ratio.
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Figure 4: Average ratio of the pairwise distance for simulation data using Very Sparse RP: The
plots correspond to the simulation for Very Sparse RP, TRP, TRP(5) respectively with n “ 20, d “
2500, 10000, 40000 and each data vector comes from Np0, Iq. The dashed line represents the error
bar 2 standard deviation away from the average ratio.

Pairwise Cosine Similarity Estimation The second experiment is to estimate the pairwise cosine
similarity, i.e. xi¨xj

}xi}2}xj}2
for xi,xj . We use both the simulation data (d “ 10000) and the MNIST

data (d “ 784, n “ 60000). We experiment with Gaussian, Sparse, Very Sparse RP, TRP, and TRP(5)
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Figure 5: Average ratio of the pairwise distance for simulation data using: The plots correspond to
the simulation for Gaussian, Sparase, Very Sparse RP, TRP, TRP(5) respectively with n “ 20, d “
d1d2d3 “ 50 ˆ 50 ˆ 50 “ 125000 and each data vector comes from Np0, Iq. The dashed line
represents the error bar 2 standard deviation away from the average ratio.

with the same setting as above (k “ 50). We evaluate the performance by the average root mean
square error (RMSE). The results is given in Table 1, 2.

Gaussian Sparse Very Sparse
RP 0.1409 (0.0015) 0.1407 (0.0013) 0.1412 (0.0014)
TRP 0.1431 (0.0016) 0.1431 (0.0015) 0.1520 (0.0033)
TRP(5) 0.1412 (0.0012) 0.1411 (0.0015) 0.1427 (0.0014)

Table 2: RMSE for the estimate of the pairwise inner product of the simulation data (d “ 10000, k “
50, n “ 100), where standard error is in the parentheses.

Appendix C Application: Sketching

Beyond random projection, our novel TRP also has an important application in sketching. Sketching
is an important technique to accelerate expensive computations with widespread applications, such
as regression, low-rank approximation, and graph sparsification, etc. [10, 22] The core idea behind
sketching is to compress a large dataset, typically a matrix or tensor, into a smaller one by multiplying
a random matrix. In this section, we will mainly focus on the low-rank matrix approximation problem.
Consider a matrix X P Rmˆd with rank r, we want to find the best rank-r approximation with the
minimal amount of time. The most common method is the randomized singular value decomposition
(SVD), whose underlying idea is sketching.

First, we compute the linear sketch Z P Rmˆk by Z “ XΩ, where Ω P Rdˆr is the random map.
Then we compute the QR decomposition of XΩ by QR “ Z, where Q P Rmˆk,R P Rrˆr. At the
end, we project X onto the column space of Q, and obtain the approximation X̂ “ QQJX.

With our TRP, we can significantly reduce the storage of the random map, while achieving similar
rate of convergence as demonstrated in Figure 6. With further variance reduction by taking the
geometric-median over multiple runs, our TRP with variance reduction can achieve even better
performance. The detailed implementation is given in Algorithm 1. And we will delay the theoretical
analysis of this method for future works.
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Algorithm 1 Tensor Sketching with Variance Reduction

Input: X P Rmˆd, where d “
śN
i“1 dn and RMAP is a user-specified function that generates a

random dimension reduction map. T is the number of runs for variance reduction averaging.
1: function SSVR(X, tdnu, k, T,RMAP)
2: for t “ 1 . . . T do
3: for i “ 1 . . . N do Ω

ptq
i “ RMAPpdi, kq

4: end for
5: Ωptq “ Ω

ptq
1 d ¨ ¨ ¨ dΩ

ptq
N

6: pQptq,„q “ QRpXΩptqq

7: X̂ptq “ QptqQptqTX
8: end for
9: X̂ “ 1

T

řT
t“1 X̂ptq

10: return G
11: end function

Furthermore, the extension of TRP to tensor data is also natural. To be specific, the nth unfolding
of a large tensor X P RI1ˆ¨¨¨ˆIN , denoted as Xpnq, has dimension In ˆ Ip´nq, where Ip´nq “
ś

i‰n,iPrNs Ii . To construct a sketch for the unfolding, we need to create a random matrix of size
Ip´nq ˆ k. Then, our TRP becomes a natural choice to avoid the otherwise extremely expensive
storage cost. For many popular tensor approximation algorithms, it is even necessary to perform
sketching for every dimension of the tensor [8, 21]. In the simulation section, we perform experiments
for the unfolding of the higher-order order tensor with our structured sketching algorithms (Figure 6).
For more details in tensor algebra, please refer to [13].

Experimental Setup In sketching problems, considering a N -D tensor X P RIN with equal length
along all dimensions, we want to compare the performance of the low rank approximation with
different maps for its first unfolding Xp1q P RIˆIN´1

.

We construct the tensor X in the following way. Generate a core tensor C P RrN , with each entry
Unifpr0, 1sq. Independently generate N orthogonal arm matrices by first creating A1, . . . ,AN P

RrˆI and then computing the arm matrices by pQn,„q “ QRpAnq, for 1 ď n ď N .

X “ Cˆ1 Q1 ¨ ¨ ¨ ˆN QN `

c

0.01 ¨ }X6}2F
IN

N p0, 1q.

Then, we construct the mode-1 unfolding of X “ Xp1q, which has a rank smaller than or equal to r.

In our simulation, we consider the scenarios of 2-D (900 ˆ 900), 3-D (400 ˆ 400 ˆ 400), 4-D
(100 ˆ 100 ˆ 100 ˆ 100) tensor data, with corresponding mode-1 unfolding of size 900 ˆ 900,
400ˆ160000, 100ˆ1000000 respectively and r “ 5. In each scenario, we compare the performance
for Gaussian RP, TRP, and TRP(5) maps with varying k from 5 to 25. The TRP map in these scenarios
has 2, 4, 6 components of size 30ˆ k, 20ˆ k, 10ˆ k respectively. And the number of runs variance
reduction averaging is T “ 5. In the end, we evaluate the performance by generating the random
matrix 100 times and compute the relative error }X´X̂}

}X} , and constructing a 95% confidence interval
for it.

Result From Figure 6, we can observe that the relative error decreases as k increases as expected
for all dimension reduction maps. The difference of the performance between the Khatri-Rao map
and Gaussian map is small when N “ 2, but increases when N increases, whereas the Khatri-Rao
variance reduced method is particularly effective producing strictly better performance than the other
two.

Appendix D Technical Lemmas

In this section, we list some technical lemmas we use in this paper. All of them are about tail
probability of sub-Gaussian or generalized sub-exponential variables.
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Figure 6: Relative Error for the low-rank tensor unfolding approximation: we compare the relative
errors for low-rank tensor approximation with different input size: 2-D (900 ˆ 900), 3-D (400 ˆ
400ˆ 400), 4-D (100ˆ 100ˆ 100ˆ 100). In each setting, we compare the performance of Gaussian
RP, TRP, and TRP(5). The dashed line stands for the 95% confidence interval.

Definition D.1. A random variable x is called sub-Gaussian if E|x|p “ Oppp{2q when pÑ8. With
this, we define sub-Gaussian norm for x (less than infinity) as

}x}ϕ2
“ sup

pě1
p´1{2pE|x|pq1{p. (D.1)

Note that for Bernoulli random variable, i.e., t´1, 1u with prob. t 1
2 ,

1
2u, ϕ2 “ 1; any bounded

random variable with absolute value less than M ą 0 has ϕ2 ďM . For standard Gaussian random
variable, ϕ2 “ 1.
Lemma D.1. (Hanson-Wright Inequality) Let x “ px1, ¨ ¨ ¨ , xnq P Rn be a random vector with
independent components Xi which satisfies Exi “ 0 and ϕ2px1q ď K. Let A be an nˆ n matrix.
Then, for every η ě 0, there exists a general constant c s.t.

P
`

|xJAx´ ExJAx| ě η
˘

ď 2 exp

„

´cmin

"

η

K2}A}
,

η2

}A}2FK
4

*

.

Proof. Please refer to [19]

Lemma D.2. Let x be a random variable whose tail probability satisfies for every η ě 0, there exists
a constant c1 s.t.

P p|x| ě ηq ď 2 exp
“

´c1 min
`

η, η2
˘‰

.

Then for any k ě 1, x satisfies generalized sub-exponential moment condition A.1 with α “ 1, i.e.,

E|x|k ď pCkqk,
where C “ 1` 1

c1
.

Proof.

E|x|k “
ż 1

0

kxk´12 expr´c1x
2sdx`

ż 8

1

kxk´12 expr´c1xsdx

ď 1``
1

ck1

ż 8

0

kyk´12 expr´ysdy

“ 1`
1

ck1
kΓpk ´ 1q ď

„

1`
1

ck1



kk.

(D.2)

Noticing
”

1` 1
ck1

ı1{k

ď 1` 1
c1

, we finish the proof.

Lemma D.3. For a random vector x with each element independent and identically distributed with
mean zero and variance 1, suppose each element of x satisfies generalized sub-exponential moment
condition as in (D.2), that there exists a general constant C s.t. E|x1|

k ď pCkqαk. Then for any
matrix A P Rnˆn, there exists a general constant c1

P
`ˇ

ˇxJAx´ ExJAx
ˇ

ˇ ě η
˘

ď C exp

˜

´c1

„

η

}A}F

1{p2p1`αqq
¸

.
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Proof. The proof is directly from Lemma 8.3 in [7] and we change the statement on generalized
sub-exponential R.V. directly to the statement on the moment condition.
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