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Abstract

Knowledge Graphs (KGs) are large-scale triple-oriented relational databases for
knowledge representation and reasoning. Implicit knowledge can be inferred by
modeling and reconstructing the KGs. However, modeling becomes more and
more computational resource intensive with the growing size of KGs. In this work
we present the first quantum machine learning algorithm for knowledge graphs.
This sampling-based quantum algorithm exhibits exponential acceleration w.r.t. the
size of KGs during the inference task.

1 Introduction

KGs are graph-structured relational database consisting of semantic triples (subject, predicate, object),
where subject and object are nodes in the graph and predicate indicates the labeled arrow from the
subject to the object. On the other hand, a knowledge graph can be seen as a tensor with three
dimensions: one stands for subjects, one for predicates, and one for objects. Conventionally, we let
χ ∈ {0, 1}d1×d2×d3 denote the KG semantic tensor, where d1, d2, and d3 represents the number
of subjects, predicates, and objects, respectively. An entry xspo in χ takes value 1 if the semantic
triple (s, p, o) is true, while it takes value 0 if the triple is simply wrong or missing. Values for
the missing entries can be partly restored by modeling the observed entires. KGs can be modeled
using tensor models, e.g., Tucker [20], PARAFAC [9], RESCAL [17], or compositional models, e.g.,
DistMult [22], HolE [16], HolNN [13].

In practice one might notice that inference tasks demand huge computing resources. This is because,
given an incomplete semantic triple, say (s,p, ?), the running time for inferring the correct objects
to the query scales as O(d3). The same algorithm has to be repeated at least d3 times in order to
determine possible answers leading to huge waste of computing power; especially, when nowadays
the sizes of knowledge graphs are consistently growing. Thus the goal of this paper is to find quantum
algorithms with potential acceleration to the inference tasks.

Quantum machine learning [3] is becoming an active research area by attracting researchers from
different communities. It exhibits great potentials in speeding up classical algorithms, e.g., solving
linear systems of equations [8], supervised and unsupervised learning [21], reinforcement learning [6],
recommendation systems [10], etc. In this work, we present a quantum algorithm for modeling
the knowledge graphs which shows exponential acceleration w.r.t. the size of knowledge graph. In
particular, the knowledge graph is modeled by quantum singular value decomposition and projection,
and the inference is achieved by sampling quantum states.

2 Tensor SVD

Firs, we recap singular value decomposition (SVD) of matrices. Then we introduce tensor SVD, and
show that a given tensor can be reconstructed with small error from the low-rank tensor SVD of the
subsampled tensor.
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SVD Let A ∈ Rm×n, the SVD is a factorization of A is the form A = UΣV ᵀ, where Σ is a
rectangle diagonal matrix singular values on the diagonal, U ∈ Rm×m and V ∈ Rn×n are orthogonal
matrices with UᵀU = UUᵀ = Im and V ᵀV = V V ᵀ = In.

Notations for Tensors We adopt the notations from [4]. A N -way tensor is defined as A =
(ai1i2···iN ) ∈ Rd1×d2×···×dN , where dn is the n-th dimension. Given two tensors A and B with the

same dimensions, the inner product is defined as 〈A,B〉F :=
dN∑
iN=1

· · ·
d1∑
i1=1

ai1i2···iN bi1i2···iN . The

Frobenius norm is defined as ||A||F :=
√
〈A,A〉F . The spectral norm of a tensor is defined as

||A||σ := max{A ⊗1 x1 ⊗ · · · ⊗N xN |xk ∈ Sdk−1, k = 1, · · · , N}, (1)

where the tensor-vector product is defined as A ⊗1 x1 ⊗ · · · ⊗N xN :=
dN∑
iN=1

· · ·
d1∑
i1=1

Ai1i2···iNx1i1x2i2 · · ·xNiN and Sdk−1 is the unit sphere in Rnk .

Tensor SVD Parallel to the matrix singular value decomposition, tensor singular value decompo-
sition was first studied in [4].
Definition 1. [4] If a tensor A ∈ Rd1×d2×···×dN can be written as sum of rank-1 outer product
tensors A =

∑R
i=1 σiu

(i)
1 ⊗ u

(i)
2 ⊗ · · · ⊗ u

(i)
N , with singular values σ1 ≥ σ2 ≥ · · · ≥ σR > 0 and

〈u(i)
k , u

(j)
k 〉 = δij for k = 1, · · · , N . Then A has a tensor singular value decomposition with rank R.

Define the orthogonal matrices Uk = [u
(1)
k , u

(2)
k , · · · , u(R)

k ] ∈ Rdk×R with UTk Uk = IR for k =
1, · · · , N , and the diagonal tensor D ∈ RR×R×···×R with Dii···i = σi, then the tensor SVD for A
can be also written as A = D ⊗1 U1 ⊗2 U2 ⊗ · · · ⊗N UN .

Consider a given tensor A, an interesting question is to find the low-rank tensor SVD of it.[4] proves
the existence of the global optimum of the following optimization problem

min ||A −
R∑

i=1

σiu
(i)
1 ⊗ u

(i)
2 ⊗ · · · ⊗ u

(i)
N ||F ; s.t. 〈u(i)

k , u
(j)
k 〉 = δij , for k = 1, · · · , N

for an arbitrary A ∈ Rd1×d2×···×dN and R ≤ min{d1, d2, · · · , dN} being the rank of tensor SVD.

Our quantum algorithm relies on the assumption that the semantic tensor χ can be approximated by
a low rank tensor χ̂ with ||χ− χ̂||2F ≤ ε||χ||2F for small ε > 0. Previous work on recommendation
systems [5] shows that the quality of recommendations for users depends on the reconstruction
error. Similarly, in the case of relational learning, having a bounded tensor approximation error, it is
possible to estimate the probability for a bad information retrieval. Consider a query (s,p, ?). We
normally only read top-n returns from the reconstructed tensor χ̂, written as x̂sp1, · · · , x̂spn, where
n is a small integer and related to the commonly used Hits@n metric. The information retrieval is
called successful if the correct answer to the query is in the list x̂sp1, · · · , x̂spn which are assumed to
be lager than a threshold δ. We have the following estimation.
Lemma 1. If an algorithm returns an approximation of the semantic tensor χ, denoted χ̂, with
||χ− χ̂||2F ≤ ε||χ||2F , then the probability of an unsuccessful information retrieval from the top-n
returns of χ̂ is bounded by ε

nδ2 . (Proof in A.1)

In real-world applications we can only observe part of the non-zero entries in a given tensor A, and
the task is to infer unobserved non-zero entries with high probability. This corresponds to items
recommendation for users given an observed preference matrix, or implicit knowledge inference
given partially observed relational data. The partially observed tensor is called as subsampled or
sparsified, denoted Â. Matrix sparsification was first studied in [2], and tensor sparsification in [14].
Without further specifying the dimensionality of the tensor, we consider the following subsampling
and rescaling scheme proposed in [2]:

Âi1i2···iN =

{Ai1i2···iN
p with probability p

0 otherwise.
(2)

It means that the non-zero elements of a tensor are independently and identically sampled with the
probability p and rescaled afterwards.
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Now, the task is converted to reconstruct the original tensor A by modeling Â. We will use tenor
SVD to model the observed tensor Â. The reconstruction error can be bounded either using the
truncated r-rank tenor SVD, denoted Âr, or the projected tensor SVD with absolute singular value
threshold τ , denoted Â|·|≥τ . Theorem 1 and 2 give the bounds and the corresponding conditions on
the sample probability. Some experimental results of classical tensor SVD are relegated to A.7.
Theorem 1. Let A ∈ {0, 1}d1×d2×···×dN , which can be sufficiently approximated by its ten-
sor SVD. Using the subsampling scheme defined in Eq. 2 with the sample probability p =

8r
(

log( 2N
N0

)
∑N
k=1 dk + log 2

δ

)
/(ε̃||A||F )2, then the original tensor A can be reconstructed with

bounded error ||A − Âr||F ≤ ε||A||F with probability at least 1 − δ, where ε is a function of ε̃.
(Proof in A.2)
Theorem 2. Let A ∈ {0, 1}d1×d2×···×dN , which can be sufficiently approximated by its tensor SVD.
Suppose Â is the sparsified tensor using the subsampling scheme defined in Eq. 2, then A can be
reconstructed from the projected tensor SVD of Â with bounded error ||A − Â|·|≥τ ||F ≤ ε||A||F by
carefully choosing the threshold τ and the sample probability p. (Proof in A.2)

3 Quantum Machine Learning Algorithm for Knowledge Graphs

In this section we propose a quantum algorithm for inference on knowledge graphs using quantum
singular value estimation. In the following we focus on the semantic tensor χ ∈ {0, 1}d1×d2×d3 , and
let χ̂ denote the partially observed part. Since knowledge graphs contain significant global relational
patterns [15], χ can be reconstructed sufficiently by χ̂ according to Theorem 1.

Moreover, w.l.o.g., we consider querying on the correct objects given (s,p, ?). Recall that in the
case of recommendation system a preference matrix could have multiple nonzero entries in a given
user-row, and recommendations are made according to nonzero entries by assuming that the user
is ’typical’ [5]. However, in a KG there might be only one nonzero entry in the row (s,p, ·). Thus,
for inference on the KG quantum algorithm needs to sample triples with the given subject s and
post-select on the predicate p. This can be a valid step if the number of semantic triples having s as
subject is O(1).

The most technical challenge in quantum machine learning is to load classical data into quantum
registers or states, since reading or writing high-dimensional data might directly destroy the quantum
acceleration gained with respect to the dimensionality of the data. Thus, a technique quantum
Random Access Memory (qRAM) [7] was developed, which can map a classical data vector into its
quantum state with exponential acceleration. A.3 shows that there exits a classical memory structure
for implementing qRAM.

We briefly sketch the quantum algorithm. The basic idea is to project the observed data onto the space
spanned by the eigenspaces of χ̂ whose corresponding singular values are larger than a threshold.
Thus, we need to create an operator which can reveal the eigenspaces of χ̂, and a quantum algorithm
for estimating the singular values.

The first step is to prepare the following quantum state from χ̂:

ρχ̂†χ̂ :=
∑

i2i3i′2i
′
3

Ci2i3i′2i′3 |i2i3〉 〈i
′
2i
′
3| =

∑

i2i3i′2i
′
3

∑

i1

χ̂†i1,i2i3 χ̂i1,i′2i′3 |i2i3〉 〈i
′
2i
′
3| ,

where
∑
i1

χ̂†i1,i2i3 χ̂i1,i′2i′3 means tenor contraction along the first dimension.

Lemma 2. ρχ̂†χ̂ can be prepared via qRAM in time O(log(d1d2d3)) (Proof see A.4).

Since we assume that the subsampled tensors χ̂ can be sufficiently approximated by its tensor

SVD, namely χ̂ ≈
R∑
i=1

σiu
(i)
1 ⊗ u

(i)
2 ⊗ u

(i)
3 , the density ρχ̂†χ̂ will be decomposed as ρχ̂†χ̂ =

1∑R
i=1 σ

2
i

R∑
i=1

σ2
i |u

(2)
i 〉 ⊗ |u

(3)
i 〉 〈u

(2)
i | ⊗ 〈u

(3)
i | . In [12] this is called quantum state self-tomography.

The next step is to estimate singular values of ρχ̂†χ̂ via the method proposed in [12] which is referred
to as quantum principal component analysis (qPCA). The key is to prepare the unitary operator
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U =
K−1∑
k=0

|k ∆t〉 〈k ∆t|C ⊗ exp(−ik∆tρ̃χ̂†χ̂), where the clock register C is needed for the phase

estimation, K∆t determines the precision of estimated singular values, and ρ̃χ̂†χ̂ is the rescaled
density matrix. The following Lemma shows that the unitary operator e−itρ̃χ̂†χ̂ can be applied on an
arbitrary quantum state for any given t.

Lemma 3. [19] Unitary operator e−itρ̃χ̂†χ̂ can be applied to any quantum state, where ρ̃χ̂†χ̂ :=
ρ
χ̂†χ̂
d2d3

.

The total run time of simulation is O( t
2

ε Tρ), where ε is the accuracy, and Tρ is the time for accessing
the density matrix and simulating the unitary operator on quantum state. (see A.5)

Since we sample triples given the subject s, a quantum state |χ̂(1)
s 〉I needs to be created first, where

χ̂
(1)
s denotes the s-row of the flattened tensor χ̂ along the first dimension, and I indicates the input

register. Afterwards the operator U is applied to the quantum state
K−1∑
k=0

|k∆t〉C ⊗ |χ̂
(1)
s 〉I . After this

stage of computation, we obtain
R∑

i=1

βi

(
K−1∑

k=0

e−ik ∆t σ̃2
i |k ∆t〉C

)
|u(2)
i 〉I ⊗ |u

(3)
i 〉I , (3)

where σ̃i := σi√
d2d3

are the rescaled singular values of ρ̃χ̂†χ̂. Moreover, βi are the coefficients of

|χ̂(1)
s 〉I written in the basis |u(i)

2 〉I ⊗ |u
(i)
3 〉I , namely |χ̂(1)

s 〉I =
∑R
i=1 βi |u

(i)
2 〉I ⊗ |u

(i)
3 〉I .

The third step is to perform the quantum phase estimation algorithm on the clock register C. The
quantum phase estimation was first propose in [11] and given in the A.6. The resulting state reads∑R
i=1 βi |λi〉C ⊗ |u

(i)
2 〉I ⊗ |u

(i)
3 〉I where λi := 2π

σ̃2
i

. This step can be understood as follows: The

probability amplitude of measuring the register C is maximized when k ∆t = 2π
σ̃2
i

(see the quantum
state in Eq. 3). Thus, the time step ∆t determines the accuracy of quantum phase estimation. We chose
∆t = O( 1

ε ), and according to Lemma 3 the total run time is O( 1
ε3Tρ) = O( 1

ε3 polylog(d1d2d3)).
We can also perform controlled computation on the register to recover the original singular values,
and obtain

∑R
i=1 βi |σ2

i 〉C ⊗ |u
(i)
2 〉I ⊗ |u

(i)
3 〉I .

The next step is to perform quantum singular values projection on the quantum state from the last step.
Classically, this step corresponds to projecting χ̂ onto χ̂|·|≥τ . In this way, observed signals will be
smoothed and unobserved signals can be boosted from which we can infer unseen triples (s,p, ?) in
the test dataset (see Theorem 2). The quantum projection given the threshold τ > 0 can be performed
in the following way: Create a new register R and a unitary operator that maps |σ2

i 〉C ⊗ |0〉R to
|σ2
i 〉C ⊗ |1〉R if σ2

i < τ2. This step of projection gives
∑

i:σ2
i≥τ2

βi |σ2
i 〉C ⊗ |u

(i)
2 〉I ⊗ |u

(i)
3 〉I ⊗ |0〉R +

∑

i:σ2
i<τ

2

βi |σ2
i 〉C ⊗ |u

(i)
2 〉I ⊗ |u

(i)
3 〉I ⊗ |1〉R . (4)

The last step is to erase the clock register, and measure be new register R and post-select the state
|0〉R. This gives the state

∑
i:σ2

i≥τ2

βi |u(i)
2 〉I ⊗ |u

(i)
3 〉I = |χ̂+

|·|≥τ χ̂|·|≥τ χ̂
(1)
s 〉, where χ̂+

|·|≥τ χ̂|·|≥τ :=

∑
i:σ2

i≥τ2

(u
(i)
2 ⊗u

(i)
3 )⊗(u

(i)
2 ⊗u

(i)
3 ) which is similar to the pseudoinverse in the case of matrices. Finally,

we can measure this state in the standard the basis to get the triples with subject s, and post-select on
the predicate p. This will return objects to the inference (s,p, ?) after O( 1

ε3 polylog(d1d2d3)) times
of repetitions. The quantum algorithm is summarized in A.8.

4. Conclusion In this work we present a quantum machine learning algorithm showing exponen-
tially accelerated inference on knowledge graphs. We first prove that the semantic tensor can be
reconstructed from the projected tensor SVD of the subsampled tensor with small error. Afterwards,
we construct the quantum algorithm using quantum singular value estimation and projection. The
resulting sample-based quantum machine learning algorithm shows an exponential acceleration w.r.t.
the dimensions of the semantic tensor. However, the proposed quantum algorithm cannot be fully
implemented on the state-of-the-art quantum computers due to the limited number of fully entangled
qubits [18] and the technical difficulties of implementing qRAM [1].
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A Appendix

A.1 Proof of Lemma 1

Proof. Without loss of generality, consider the retrieval of objects given the inference task (s,p, ?).
The retrieval becomes unsuccessful if the correct objects regarding to the query cannot be found
in the top-n returns from χ̂. Suppose the entries of χ are 0 and 1, and x̂sp1 ≥ · · · ≥ x̂spn ≥ δ.
Then the minimum contribution of an unsuccessful retrieval to the reconstruction error ||χ− χ̂||2F
is nδ2 + 1 ≈ nδ2. Ignore the multiplicity of the correct answers to a single query, and since the
reconstruction error is bounded by ε||χ||2F , the probability of an unsuccessful retrieval is bounded by
ε
nδ2 .

A.2 Proof of Theorem 1 and Theorem 2

We introduce the following notations to bound the reconstruction error from the subsampled tensor.
Consider a N -way tensor A ∈ Rd1×d2×···×dN , which has a tensor SVD with full rank R. Let
Ar = D ⊗1 U1 ⊗2 U2 ⊗ · · · ⊗N UN denote the truncated r-rank tenor SVD of A with Ui ∈ Rdi×r
for i = 1, · · · , N . Define the projection operators PA,ri := I ⊗ ⊗ · · · ⊗ UiU

T
i ⊗ · · · ⊗ I with

i = 1, · · · , N , and the product projections PA,r :=
∏N
i=1 P

A,r
i . We have:

Lemma A 1. PA,rA = Ar.

Proof. Let AR = D̃ ⊗1 Ũ1 ⊗ · · · ⊗ ŨN denotes the full rank tensor SVD of A, where Ũi =

[u
(1)
i , u

(2)
i , · · · , u(R)

i ] for i = 1, · · · , N . Define A⊥R := A−AR, then we have 〈A⊥R, Ti〉 = 0 with
Ti := u

(i)
1 ⊗ u

(i)
2 ⊗ · · · ⊗ u

(i)
N for i = 1, · · · , R. To see this, suppose ∃j, such that 〈A⊥R, Tj〉 = ε 6= 0.

Then,

||A −
R∑

i=1

σiTi − εTj ||2F = ||A −
R∑

i=1

σiTi||2F − ε2 < ||A −
R∑

i=1

σiTi||2F ,

which contradicts the fact that AR is the global minimum of the optimization. Thus, PA,rA =

PA,r(AR +A⊥R) =
∏N
i=1 P

A,r
i AR = Ar.

Consider two tensorsA and B which can be sufficiently approximated by their tensor SVDs, and their
r-rank projection operators PA,r and PB,r. We can derive the inequality ||PA,rA||F ≥ ||PB,rA||F .
Parallel to Lemma 4 in [1], we can have the following bound.

Lemma A 2. [1] Given tensors A, B and their r-rank tensor SVD approximations Ar = PA,rA,
Br = PB,rB, we have

||A − Br||F ≤ ||A −Ar||F + 2
√
||(A− B)r||F ||Ar||F + ||(A− B)r||F . (1)

Consider a tensor A that is subsampled and rescaled. This perturbed tensor can be written as
Â = A + N , where N is a random tensor. In the following, we use Â to represent subsampled
(sparsified) tensor, and Âr the truncated r-rank tensor SVD of Â. Thus, according to Lemma 2, the
reconstruction error from the truncated Â is bounded by

||A − Âr||F ≤ ||A −Ar||F + 2
√
||Nr||F ||Ar||F + ||Nr||F . (2)

In order to further estimate the bound of the error, we briefly recap the tensor subsampling and
sparsification techniques. The basic idea behind matrix/tensor sparsification algorithms is to neglect
all small entries, and keep or amplify sufficiently large entries, such that the original matrix/tensor
can be reconstructed element-wise with bounded error. Matrix sparsification was first studied in [1],
and tensor sparsification in [5]. Recall that the semantic tensor contains entries 0 and 1. Thus,
sparsification of the semantic tensor is equivalent to the separation of training and test datasets, and
the reconstruction is equivalent to the inference on the test dataset.
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Without further specification, we consider the following general sparsification and rescaling method
used in [1]:

Âi1i2···iN =

{Ai1i2···iN
p with probability p

0 otherwise,
(3)

where the choose of the element-wise sample probability p will be discussed later. Note that the
expectation values of the entries of the sparsified tensor read E[Âi1i2···iN ] = Ai1i2···iN . Recall that
the perturbation is defined as N = Â − A. Thus, the entries of the noise tensor have zero mean
E[Ni1i2···iN ] = 0 and variance Var[Ni1i2···iN ] = Ai1i2···iN ( 1

p − 1).

We give the bounds of norms of the noise tensor N , the proof closely follows [10].
Lemma A 3. Assume that the noise tensor N is generated by subsampling a binary tensor A ∈
{0, 1}d1×d2×···×dN according to Eq. 3. The spectral norm of N is bounded by

||N ||σ ≤

√√√√8

p

(
log(

2N

N0
)

N∑

k=1

dk + log
2

δ

)
, (4)

with probability at least 1− δ.

Proof. Note that the entries Ni1i2···iN are independent having zero mean and bounded variance
Var[Ni1i2···iN ] ≤ 1

p − 1. We first estimate the following quantity

lnE[eηNi1i2···iN ] = lnE[eη(Âi1i2···iN−Ai1i2···iN )]

= ln
[
e−Ai1i2···iN η

(
peηAi1i2···iN /p + (1− p)

)]
.

A series expansion around η ≈ 0 reveals that

lnE[eηNi1i2···iN ] ≈ η2Ai1i2···iN (1− p)
2p

≤ η2 1

2p
⇒ E[eηNi1i2···iN ] ≤ eη

2/2p (5)

by using the fact Ai1i2···iN ∈ {0, 1}.
Afterwards, the tensor-vector product N ⊗1 x1 · · · ⊗N xN with xk ∈ Sdk−1, k = 1, · · · , N can
be estimated by bounding the probability Pr(|N ⊗1 x1 · · · ⊗N xN | ≥ t) for non-negative t. Given
Eq. 5 we have

E[esNi1i2···iN x1i1
x2i2
···xNiN ] ≤ es

2x2
1i1
x2
2i2
···x2

NiN
/2p,

where s is an auxiliary variable. This gives

Pr(N ⊗1 x1 · · · ⊗N xN ≥ t) = Pr(esN⊗1x1···⊗NxN ≥ est)

≤ e−stE[esN⊗1x1···⊗NxN ]

≤ exp{−st+
s2

2p

d1∑

i1=1

· · ·
dN∑

iN=1

x2
1i1 · · ·x2

NiN }

= e−st+
s2

2p .

The above equation takes the minimum when s = tp, with Pr(N ⊗1 x1 · · · ⊗N xN ≥ t) ≤ e−
t2p
2 .

Similarly we have the probability Pr(N ⊗1 x1 · · · ⊗N xN ≤ −t) ≤ e−
t2p
2 . Thus, in summary

Pr(|N ⊗1 x1 · · · ⊗N xN | ≥ t) ≤ 2e−
t2p
2 .

Using the covering number on unit spheres and the compactness of the space Sd1−1×Sd2−1× · · · ×
SdN−1, the spectral norm of the noise tensor N can be bounded as follows:

||N ||σ ≤

√√√√8

p

(
log(

2N

N0
)

N∑

k=1

dk + log
2

δ

)
(6)

with probability at least 1−δ, where the constantN0 := log 3
2 (see the proof of Theorem 2 in [10]).
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Using the facts that ||Nr||σ = ||N ||σ, and ||Nr||F ≤
√
r||Nr||σ. We can estimate the norms of the

truncated tensor SVD of the noise tensor.

Lemma A 4.

||Nr||σ ≤

√√√√8

p

(
log(

2N

N0
)
N∑

k=1

dk + log
2

δ

)

||Nr||F ≤

√√√√r
8

p

(
log(

2N

N0
)
N∑

k=1

dk + log
2

δ

)
.

Now we are able to determine the sample probability, such that the error ratio ||A−Âr||F||A||F is bounded.

Theorem A 1 (Theorem 1 in the main text). Let A ∈ {0, 1}d1×d2×···×dN , which can be sufficiently
approximated by its tensor SVD. Using the subsampling scheme defined in Eq. 3 with the sample

probability p = 8r

(
log( 2N

N0
)
N∑
k=1

dk + log 2
δ

)
/(ε̃||A||F )2, then the original tensor A can be recon-

structed with bounded error ||A − Âr||F ≤ ε||A||F with probability at least 1 − δ, where ε is a
function of ε̃.

Proof. Suppose tensor A can be sufficiently approximated by its r-rank tensor SVD, in a sense that
||A − Ar|| ≤ ε0||A||F for some small ε0 > 0. Let the Frobenius norm of the low-rank noise tensor
Nr be bounded by ε̃||A||F with ε̃ > 0. According to Lemma A 4 the sample probability should

satisfy p ≥
8r

(
log( 2N

N0
)
N∑
k=1

dk+log 2
δ

)

(ε̃||A||F )2 . Using Eq. 2 we have

||A − Âr||F ≤ ε0||A||F + 2
√
ε̃||A||F + ε̃||A||F = ε||A||F ,

where ε := ε0 + 2
√
ε̃+ ε̃.

Note that in the case where A is a two-dimensional matrix, the sample probability derived in [1]
reads O(d1+d2

||A||2F
). This corresponds the high-dimensional tensor case.

For the later use in the quantum algorithm, instead of considering low-rank approximation of the
subsampled tensor, we study the tensor SVD with projected singular values, denoted as Â|·|≥τ . This
notation denotes that subsampled tensor Â is projected onto the eigenspaces with absolute singular
values larger than a threshold. Later, it will be also referred to as the projected tensor SVD of Â with
threshold τ . The following theorem discusses the choice of sample probability and threshold τ , such

that the error ratio ||A−Â|·|≥τ ||F||A||F is bounded.

Theorem A 2 (Theorem 2 in the main text). Let A ∈ {0, 1}d1×d2×···×dN , which can be sufficiently
approximated by its tensor SVD. Suppose Â is the sparsified tensor using the subsampling scheme
defined in Eq. 3, then A can be reconstructed from the projected tensor SVD of Â with bounded error
||A − Â|·|≥τ ||F ≤ ε||A||F by carefully choosing the threshold τ and the sample probability p.

Proof. Suppose tensor A can be sufficiently approximated by its r-rank tensor SVD, in a sense that
||A − Ar|| ≤ ε0||A||F for some small ε0 > 0. Define the threshold as τ := κ||Â||F for some κ > 0.

Let l1 denote the largest index of singular values with σl1 ≥ κ||Â||F , and let l2 denote the smallest
index of singular values with σl2 ≤ −κ||Â||F . If the threshold τ is large enough, we consider the
case l1 � l2. In addition, we have the following constrain

l1 · σ2
l1 ≤ ||Âl1 ||2F ≤ ||Â||2F ⇒ l1 · κ2 ≤ 1. (7)
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Recall that the full rank tensor SVD of Â is written as ÂR, where the full rank R can be much larger
than r. We first bound ||A − Â|·|≥τ ||F as follows:

||A − Â|·|≥τ ||F = ||A − Â[0,l1]∪[l2,R]||F = ||A − (ÂR − Âl2 + Âl1)||F
≤ ||A − Âl1 ||F + ||Âl2 − ÂR||F = ||A − Âl1 ||F + ||A − A+ Âl2 − ÂR||F
≤ ||A − Âl1 ||F + ||A − ÂR||F + ||A − Âl2 ||F
≤ 3||A − Âl1 ||F .

Assume l1 � l2, we only distinguish two cases: l2 � l1 ≥ r and l1 < r � l2.

If l1 ≥ r, we have

||A − Â|·|≥τ ||F ≤ 3||A − Âl1 ||F ≤ 3(||A − Al1 ||F + 2
√
||Nl1 ||F ||A||F + ||Nl1 ||F )

≤ 3(||A − Ar||F + 2
√
||Nl1 ||F ||A||F + ||Nl1 ||F ).

Let ||Nl1 ||F ≤ ε̃||A||F for some small ε̃ > 0. According to the Lemma 4 the sample
probability should satisfy p ≥ l1 C0

(ε̃||A||F )2 := p1 where the constant is defined as C0 :=

8

(
log( 2N

N0
)
N∑
k=1

dk + log 2
δ

)
. In this case ||A − Â|·|≥τ ||F ≤ 3(ε0 + 2

√
ε̃+ ε̃)||A||F for l1 ≥ r.

On the other hand if l1 < r � l2, we first fix the sample probability p = p1 and use the fact that
||Â||F ≤

√
2
p ||A||F is satisfied with high probability (see the proof of Theorem 4.2 in [3]). It gives

||A − Â|·|≥σ||F ≤ 3||A − Âl1 ||F
≤ 3(||A − Al1 ||F + 2

√
||Nl1 ||F ||A||F + ||Nl1 ||F )

≤ 3(||A − Ar||F + ||Ar −Al1 ||F + 2
√
||Nl1 ||F ||A||F + ||Nl1 ||F )

≤ 3(||A − Ar||F +

√
2r

p
κ||A||F + 2

√
||Nl1 ||F ||A||F + ||Nl1 ||F )

≤ 3(ε0 +

√
2r

p
κ

︸ ︷︷ ︸
(?)

+2
√
ε̃+ ε̃)||A||F , (8)

in the last line we have used the assumption ||Nl1 ||F ≤ ε̃||A||F . In order to choose κ, we use
the constraint Eq. 7, fix the sample probability p temporarily, and use the assumption ||Nl1 ||F ≤√

l1 C0

p = ε̃||A||F . It gives

l1 =
p(ε̃||A||F )2

C0
⇒ κ2 ≤ C0

p(ε̃||A||F )2
.

Plug the above inequality of κ into the (?) term of Eq. 8, and requires that (?) ≤ ε1 for some small
ε1 > 0, we have

||A − Â|·|≥σ||F ≤ 3(ε0 + ε1 + 2
√
ε̃+ ε̃)||A||F ,

where the sample probability must satisfy p ≥
√

2rC0

ε1ε̃||A||F := p2.

Combine two situations we have ||A − Â|·|≥σ||F ≤ ε||A||F , where ε := 3(ε0 + ε1 + 2
√
ε̃+ ε̃), if

the sample probability and the threshold are chosen as

p = max{p1, p2}

τ = κ||Â||F ≤
√
C0

pε̃2
||Â||F
||A||F

≤
√

2C0

pε̃
.

The above estimation on the error bound in the case of projected tensor SVD is crucial for the
quantum algorithm, since quantum projection depends only on the threshold defined for the singular
values.
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A.3 Data Structure

Theorem A 3. [8] Let x ∈ RN be a real-valued vector. The quantum state |x〉 = 1
||x||2

N∑
i=1

xi |i〉 can

be prepared using dlogNe qubits in time O(logN).

Theorem A 3 claims that there exists a classical memory structure for implementing qRAM. Figure 1
illustrates a simplest example: Given a N = 4 dimensional real-valued vector, the quantum state
|x〉 = x1 |00〉+ x2 |01〉+ x3 |10〉+ x4 |11〉 can be created by querying the classical structure and
applying 3 quantum (controlled) rotations.

Assume that x is normalized, ||x||2 = 1. The quantum state |x〉 is created from the initial state
|0〉 |0〉 by querying the memory structure from the root to the leaf. The first rotation is applied
on qubit 1, giving (cos θ1 |0〉+ sin θ1 |1〉) |0〉 = (

√
x2

1 + x2
2 |0〉+

√
x2

3 + x2
4 |1〉) |0〉, where θ1 :=

tan−1
√

x2
3+x2

4

x2
1+x2

2
. The second rotation is applied on qubit 2 conditioned on the state of qubit 1. It gives

√
x2

1 + x2
2 |0〉

1√
x2

1 + x2
2

(|x1| |0〉+ |x2| |1〉) +
√
x2

3 + x2
4 |1〉

1√
x2

3 + x2
4

(|x3| |0〉+ |x4| |1〉).

The last rotation load the signs for the coefficients of conditioned on qubits 1 and 2. In general, a N -
dimensional real-valued vector needs to the stored in the classical memory structure with dlogNe+1.
Thus, the data vector can be loaded into quantum state using O(dlogNe) non-trivial controlled
rotations.

||x||2

x2
1 + x2

2

x2
1

sgn(x1)

x2
2

sgn(x2)

x2
3 + x2

4

x2
3

sgn(x3)

x2
4

sgn(x4)

Figure 1: Classical memory structure with quantum access for creating the quantum state |x〉 =
x1 |00〉+ x2 |01〉+ x3 |10〉+ x4 |11〉.

Remark: The above simple case of qRAM, generating quantum state from a real-valued vector, can
be simply generalized to quantumly accessing matrices or tensors.

A.4 Preparation of ρχ̂†χ̂

Proof. Since the normalized χ̂ ∈ Rd1×d2×d3 is a real-valued tensor, the quantum state∑
i1i2i3

χ̂i1i2i3 |i1i2i3〉 =
∑
i1i2i3

χ̂i1i2i3 |i1〉 ⊗ |i2〉 ⊗ |i3〉 can be prepared via qRAM in time

O(log(d1d2d3)). The corresponding density matrix can be written as

ρ =
∑

i1i2i3

∑

i′1i
′
2i
′
3

χ̂i1i2i3 |i1〉 ⊗ |i2〉 ⊗ |i3〉 〈i′1| ⊗ 〈i′2| ⊗ 〈i′3| χ̂i′1i′2i′3 .

Then, a partial trace on the first index register of the density matrix gives

tr1(ρ) =
∑

i2i3

∑

i′2i
′
3

∑

i1

χ̂i1i2i3 |i2〉 ⊗ |i3〉 〈i′2| ⊗ 〈i′3| χ̂i1i′2i′3

=
∑

i2i3i′2i
′
3

∑

i1

χ̂i1i2i3 χ̂i1i′2i′3 |i2i3〉 〈i
′
2i
′
3| := ρχ̂†χ̂.
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A.5 Simulation of the unitary operator e−itρ̃χ̂†χ̂

Proof. Recall that ρχ̂†χ̂ =
∑

i2i3i′2i
′
3

Ci2i3i′2i′3 |i2i3〉 〈i′2i′3|, where Ci2i3i′2i′3 =
∑
i1

χ̂†i1,i2i3 χ̂i1,i′2i′3 . For the

sake of simplicity, we rewrite ρχ̂†χ̂ as A ∈ RN2×N2

, where N := d2d3. Suppose that the unitary
operator needs to be applied on the quantum state |x〉 whose density matrix reads σ := |x〉 〈x|. Then
follow the method in [9], we first create a modified swap operator

SA =
N∑

j,k=1

Ajk |k〉 〈j| ⊗ |j〉 〈k| ,

and another auxiliary density matrix µ = |~1〉 〈~1|, with |~1〉 := 1√
N

N∑
k=1

|k〉. Consider the evolution of

the system µ⊗ σ under the unitary operator e−iSA∆t for a small step ∆t. It can be shown that

tr1{e−iSA∆tµ⊗ σeiSA∆t} ≈ e−i
A
N ∆tσei

A
N ∆t.

Moreover, repeated applications of e−iSA∆t, say n times with t := n∆t, on the bigger system µ⊗ σ
can give e−i

A
N tσei

A
N t with is the density matrix of the quantum state e−i

A
N t |x〉. In other words, we

can simulate the unitary operator e−itρ̃χ̂†χ̂ with ρ̃χ̂†χ̂ :=
ρ
χ̂†χ̂
d2d3

.

Furthermore, [9] shows that given t and the required accuracy ε, the step size ∆t should be small
enough, such that n = O( t

2

ε ). In addition, the quantum access for obtaining the density ρχ̂†χ̂ and
creating the modified swap operator requires Tρ = O(polylog(d1d2d3)) steps. In summary, the total
run time for simulating e−itρ̃χ̂†χ̂ |x〉 is nTρ = O( t

2

ε polylog(d1d2d3)).

A.6 Quantum Phase Estimation

Theorem A 4 (Phase Estimation [4]). Let unitary U |vj〉 = eiθj |vj〉 with θj ∈ [−π, π] for j ∈ [n].
There is a quantum algorithm that transforms

∑
j∈[n] αj |vj〉 7→

∑
j∈[n] αj |vj〉 |θ̄j〉 such that

|θ̄j − θj | ≤ ε for all j ∈ [n] with probability 1− 1/poly(n) in time O(TU log(n)/ε), where TU is
the time to implement U .

A.7 Classical Experiments with Tensor SVD

Some classical results of tensor SVD on different datasets are provided in this section. Given a

semantic triple (s,p, o), the value function is defined as ηspo =
R∑
i=1

σi u
(i)
s u

(i)
p u

(i)
o , where us, up,

uo are vector representations of s, p, o, respectively (More details can be found in the review [6]).
The model is trained by minimizing the following loss function via stochastic gradient descent,

L =
1

|Dtrain|
∑

(s,p,o)∈Dtrain

(yspo− ηspo)2α + γ(||Uᵀ
s Us− IR||F + ||Uᵀ

pUp− IR||F + ||Uᵀ
o Uo− IR||F ),

where the hyper-parameter γ is used to encourage the orthogonality of embedding matrices, and
α ∈ Z is a hyper-parameter of the loss function. We compare the tensor SVD model with other
benchmark methods, e.g., RESCAL [7], Tucker, and ComplEx [12]. Recall scores of different models
are given in Table 1.

KINSHIP FB15K-237
Methods MR @3 @10 MR @3 @10
RESCAL 3.2 88.8 95.5 291.3 20.7 35.1
TUCKER 2.9 89.8 95.0 276.1 20.9 35.7
COMPLEX 2.2 90.0 97.7 242.7 25.2 39.7
TSVD 2.7 84.8 96.6 404.0 21.3 37.1

Table 1: Different recall scores (Mean Rank, Hits@3, Hits@10) of various models on the KINSHIP [2]
and FB15K-237 [11] datasets.

A.8 Quantum Algorithm
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Algorithm 1 Quantum Tensor SVD for Inference on Knowledge Graph
Input: Inference task (s,p, ?)
Output: Possible objects to the inference task

Require: Quantum access to χ̂ stored in a classical memory structure; threshold τ for the singular
values projection

1: Create ρχ̂†χ̂ via qRAM
2: Create state |χ̂(1)

s 〉I on the input register

3: Prepare unitary operator U =
K−1∑
k=0

|k ∆t〉 〈k ∆t|C exp(−ik ∆t ρ̃χ̂†χ̂) and apply on |χ̂(1)
s 〉I

4: Quantum phase estimation on the clock register to get
R∑
i=1

βi |λi〉C ⊗ |u
(i)
2 〉I ⊗ |u

(i)
3 〉I

5: Controlled computation on the register to get
R∑
i=1

βi |σ2
i 〉C ⊗ |u

(i)
2 〉I ⊗ |u

(i)
3 〉I

6: Singular values projection given the threshold τ to get
∑

i:σ2
i≥τ2

βi |σ2
i 〉C ⊗ |u

(i)
2 〉I ⊗ |u

(i)
3 〉I ⊗

|0〉R +
∑

i:σ2
i<τ

2

βi |σ2
i 〉C ⊗ |u

(i)
2 〉I ⊗ |u

(i)
3 〉I ⊗ |1〉R

7: Uncompute the clock register and measure on the register R and post select the state |0〉R
8: Measure the resulting state

∑
i:σ2

i≥τ2

βi |u(i)
2 〉I ⊗ |u

(i)
3 〉I = |χ̂+

|·|≥τ χ̂|·|≥τ χ̂
(1)
s 〉

I

9: Post-select on p from the sampled triples (s, ·, ·)
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