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Abstract

In recent years, reinforcement learning techniques have enjoyed considerable
success in a variety of challenging domains, but are typically sample inefficient
and often fail to generalize well to new environments or tasks. Humans, by
contrast, are able to learn robust skills with orders of magnitude less training. One
hypothesis for this discrepancy is that humans view the world in terms of objects
and relations between them. Such a bias may be useful reducing sample complexity
and improving interpretability and generalization. In this paper, we present a
novel relational architecture which has multiple neural network sub-modules called
relational units which operate on objects and output values in the unit interval.
Our model transforms the input state representation into a relational representation,
which is then supplied as input to a Q-learner. Experiments on a goal-seeking
game with random boards show better performance over several baselines: a multi-
headed attention model, a standard MLP, a pixel MLP and a symbolic RL model.
We also find that the relations learned in the network are interpretable.

1 Introduction

Deep Learning techniques have proven invaluable in tackling many problems which previously
required tricky feature engineering. Reinforcement learning, in particular, has benefited from deep
learning, achieving notable successes in a variety of challenging domains [13, 18]. Unfortunately,
these approaches are not always sample efficient, often requiring hundreds of thousands of episodes
or more of training. More troubling still, current techniques often do not yield general or transferable
models [8]. Humans, by contrast, are much better at learning efficiently, learning generalizable
strategies from orders of magnitude less data [11]. One potential explanation for this success is that
humans view the world in terms of objects and their relations [2]. For example, in viewing an image
we may see that the cup is on the table (a binary relation between two objects) or the wall is green (a
unary relation on one object).

This work investigates the effectiveness of the relational hypothesis in RL (discussed in more detail
in [2]) that a relational inductive bias leads to improvements in learning efficiency, effectiveness,
generality and interpretability. Recent work [16, 20, 2, 14] has added support for the relational
hypothesis in domains such as visual Q/A [16] and game playing which requires reasoning [20].

In this paper, we present a novel architecture in which each relation is learned by a separate relational
unit which operates on a fixed number of objects (1 or 2 in our experiments) and produces a scalar
value in the unit interval1. We experiment on the stochastic goal-seeking game of [7] in which each
episode has a random placement of multiple goal objects, some with positive rewards and some
with negative rewards. This game, while simple, is challenging because the agent must learn a

1The logical community refers to these as ‘fuzzy’ relations.
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Figure 1: The SRN: Object state representations
are provided as input and passed directly to each
unary unit. Object pairs are computed and passed
to each binary unit. The output of the relational
units is collected in a relational state and sup-
plied as input to a Q-function.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

x-coord x-coord

y-
co

or
d

y-
co

or
d

A A

a b
Figure 2: Visualization of the output of two bi-
nary units when the agent is placed at the center
and a goal is placed on each tile which (a) shows
the degree of ‘aboveness’ of the goal from the
agent, and (b) shows degree of ‘rightness’ of the
goal from the agent.

location-relative policy to succeed. We find that the relations learned are interpretable. Our model
has the ability to learn a binary relation that indicates to what degree an object is, for example, to the
right of the agent (it learns relative, not absolute, position relations), while another binary relation
can learn ‘aboveness’ relative to the agent, and a unary relation can be learned that indicates the type
of each object. We show that with a suitable number of relational units (a hyper-parameter of our
model), we can achieve performance gains over a multi-headed attention model [20], a standard MLP,
a pixel MLP, and the symbolic RL model of [7] on this problem.

2 Related Work

Early work in the area of relational reasoning used symbolic representations and tabular learning
[5]. More recently [16] introduced a simple relational model with a single relational function for
supervised relational learning. A version using the multi-headed attention network [19] is used
in [20] to learn a policy and value function. Here, each attention head computes a relation by a
applying a scaled dot-product between pairs of objects, normalizing with softmax, and using the
result as weighting to update the object representations. Our approach differs in several respects.
First, we consider both unary (single argument) and binary (two argument) relations. Second, we
allow multiple modules for each type of relation (unary and binary). Third, we do not compute
a probability distribution over the attention scores between an object and every other, but instead
compute values in the unit interval for each comparison independently. This encodes the intuition that
the same relation may hold independently between an object and many others (for example ‘above’).
Finally, we do not use attention scores to update the object representations but instead supply the
concatenated relational values (which we call the relational state) directly to the Q-function. Our
relational unit can be viewed as implementing a fuzzy logical relation between its arguments. In this
respect, our approach connects to the neuro-symbolic reasoning work of [17, 15, 6, 4, 1].

3 Model

Since we are focusing on the relations between objects in this work, we assume that the objects have
already been extracted upstream (for example using the approach of [7] or [10]), and we have available
an m× 4 tensor of m object representations (m− 1 goals, 1 agent). Each object representation is of
size 4, consisting of the (x, y) coordinates, the type, and a binary ‘existence’ marker of whether a
goal has been captured by the agent. We consider only agent-object pairs and assume that the agent
representation is supplied first within the tensor of objects.

As shown in Figure 1, our architecture explicitly represents multiple unary (single object) and binary
(two objects) relations on objects in the state2 and concatenates the output values of those relations
to form a relational state which is supplied to the Q-function. In essence, our model can be seen

2Relations between more than two objects are straightforwardly incorporated into our model but due to the
combinatorial increase in computational expense we elected to not considered them in our current work.
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as taking the state and pre-processing it into a relational state that can be used with any deep RL
algorithm. Specifically, we use differentiable neural relation modules (units which take a vector of
objects as input, and output a value in [0, 1]) and concatenate their outputs to pass as input to the
state action value layers. We call this architecture a Symbolic Relation Network (SRN). The unary
unit is of the form: σ(W1ReLU(W2A

T + b1) + b2) where σ is the sigmoid function, W1 ∈ R1×k

and W2 ∈ Rk×n are weight tensors, A ∈ Rm×n is the dimensional input object tensor with m
n-dimensional objects, and b1 ∈ Rk×m and b2 ∈ R1×m are biases. The hidden dimension k is taken
to be the same as the object dimension n which is 4 in our experiments. The output is of dimension
m, one relation value in [0, 1] for each of the m input objects (i.e. the unit learns a representation of
each object). The binary unit is constructed similarly but we form the input tensor by concatenating
N pairs of objects to form an N × 2n input tensor. The state-action value module is a simple linear
layer which takes in the concatenation of the relational unit outputs. In implementation, we find that
our SRN model can be quite small (< 1000 total parameters) and fast.

4 Methods

In this work, we only vary the neural network model that is used to approximate the Q-function
Q(s, a), allowing us to fairly compare the different models, while keeping the environment the same3.
We test the SRN and baseline models using the environment introduced by [7] where an agent can
move up, down, left and right and must reach ‘good’ goals (green circles) that provide a positive
reward (+10), and avoid ‘bad’ goals (red circles) that provide a negative reward (-10). The game ends
when the maximum number of steps is reached (100 in our experiments) or when the agent captures
all of the good goals. Each step taken by the agent incurs a small penalty (-0.1). Each episode of
training generates a new board with a randomly placed good and bad objects.

Figure 3: Testing performance of differ-
ent models. Shaded areas show [5-95]
confidence interval.

We use off-the-shelf Deep Q-learning (DQN) [12] as our
reinforcement learning algorithm with decaying explo-
ration (parameterized through ε-greedy action selection),
decaying learning rate for the Adam optimizer [9] and
a batch size of 256. We also normalize rewards during
learning to be in [−1, 1]. We did not find that using the
difference of frames and representing goal positions as
relative to the agent (all positions fed to our model are
absolute) were necessary or helpful for learning.

We employ the testing procedure used in [3, 12, 7]: every
10 training episodes, we pause training and test our model
on 10 new random boards for 100 steps (or until the agent
finds all the good goals) and record the average test per-
formance over these 10 random boards. We repeat this
procedure for at least 10 independent trials and report the
average testing performance over these independent trials.

We test our SRN model against a number of baseline mod-
els, always ensuring that the baselines have approximately
the same number of parameters. Our baselines consists of:
1) a simple Multi-layer Perceptron comprising of three lin-
ear layers with ReLU activation learning from the object
representation; 2) a relation network based on multi-head
dot-product attention [20]; 3) the symbolic RL model of
[7]; 4) an MLP which learns directly from pixels instead
of from our object based representation consisting of 3
convolutional layers (with ReLU activations and batch normalization in between them) followed by a
final linear layer.

3We plan to share the code for our environment and training procedure, saved trained models, and hyper-
parameter configurations.
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5 Results

5.1 Interpretability

To evaluate the interpretability of the learned relations, we trained a Symbolic Relation Network
with one unary unit and two binary units with DQN on a board with only 1 goal (good and bad) and,
after convergence, evaluated the output of each relational unit. We found that the unary unit learns to
recognize good and bad objects. Specifically, a unique value between 0 and 1 is learned consistently
for each type of goal. We suspect that if goals provided more continuous levels of reward (as opposed
to just two levels, good and bad), the unary relationship would learn a more continuous representation
of the goal type, but have yet to perform this experiment.

Figure 2 shows the evaluation for each binary unit. To create these plots, we placed the agent in the
center of the board and evaluated the relationship between the agent and an object placed at each of
the colored grid locations. Each such goal location is colored on a blue-green spectrum to indicate the
value of the relationship (the output of the binary unit’s softmax) when applied to the agent and that
goal. Blue represents low values; green represents high values. We evaluated the relation using both
good and bad objects and found that the value of the relationship learned was invariant to the type of
object. We hypothesize that, since the unary relation learned the type, it was presumably unnecessary
for the binary relationship to learn it as well. In the Figure 2, (a) shows the agent has learned a notion
of degree of goal ‘aboveness’ of a goal relative to itself while (b) shows the agent has learned a degree
of goal ‘rightness’ relative to itself. Additionally, we found that the same complementary relations
can be seen even when the agent is not placed in the center. With these three independent relations,
type(X), above(agent, X), and right(agent, X), for objects X, the agent is able to learn a policy
that is location relative and hence robust to the random placement of the objects and agent each game.

5.2 Learning Performance

Model Reward Recall Precision F1
SRN 7.27 0.50 0.71 0.59
MHA -5.07 0.31 0.75 0.44
Symbolic RL -5.51 0.32 0.69 0.44
MLP-objects -3.04 0.35 0.52 0.41
MLP-pixel -7.35 0.17 0.29 0.21

Table 1: Performance of the Symbolic Relation
Network compared to other baselines.

As can be seen in Figure 3, our Symbolic Rela-
tion Network (with 8 binary units and 1 unary
unit) obtains the highest reward (statistically
significant over a [5-95] confidence interval)
and outperforms all of the baseline models of
the same size (same number of parameters),
namely a multi-layer perceptron, a multi-head
dot-product attention (MHA) [20] and the sym-
bolic RL model of [7]. In some exploratory ex-
periments, we observe that MHA models with
100 times the number of parameters as our SRN can start competing in performance with our SRN.
We also compare our SRN against a larger (with 100 times the number of parameters) Multi-layer
Perceptron that learns directly from pixels, and find very little learning (in agreement with [7]).

We also compute three other metrics for performance: the recall (proportion of good goals found
out of the total number of good goals), the precision (proportion of good goals found out of the total

number of goals found) and their harmonic mean (F1 score), F1 =
(
recall−1+precision−1

2 )
−1

which
is a standard combined measure. As we can see in Table 1, our model outperforms other baseline
model in terms of reward, recall, and F1 score and is close to MHA in precision. The results show that
our Symbolic Relation Network not only strongly outperforms other models of comparable size in
both reward and F1 measures, but is also more interpretable, learning three complementary relations
useful for solving the task.

6 Conclusion

In this paper we introduced a neural architecture for relation learning with multiple unary and binary
relational units. The outputs of the units are concatenated into a relational state vector which is
supplied directly as input to a Q-function. Our experiments on a simple but challenging stochastic,
goal-seeking environment show higher performance over a multi-headed attention model, a standard
MLP, a pixel MLP and a symbolic RL model. Additionally, the learned relations are interpretable
and complementary.
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