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Abstract

In this work, we develop an equilibrium conditional variational autoencoder(CVAE)
for structure-guided face synthesis. The proposed model has a flexible appearance
encoding space according to each facial geometry characteristic. Traditional CVAE,
constrained by its capacity, tends to lose diversity and details on generating faces
in unseen poses, resulting in structure incoherence or beautified phenomenon.
By extending the capacity of CVAE in an unsupervised fashion, our model can
thus generate photo-realistic unseen faces conditioned on a different structure, as
well as disentangling appearance and structure features. Furthermore, with great
disentanglement and generalization property, our model is able to deal with extreme
expression and rotation.

1 Introduction

Conditional face synthesis requires the ability to understand and respond to images. Just like a
baby, the model needs to gradually learn to be aware of a person’s facial expression and geometry
structure. This task, in other words, requires the power of disentangling appearance and structure. By
assembling internal appearance and external geometry structure of different people, the model would
be able to preserve given information and synthesize photo-realistic images.

Despite impressive results shown by GAN based variants[1, 2], modeling both facial geometry and
appearance and interplaying between these two factors when generating images always needs multiple
movements of a single instance to exist in training image series. As addressed, these tasks can be
decomposed as disentangling facial shapes and appearance feature. Thus we propose a ’two-branch’
conditional autoencoder which captures potential structures of a single face by utilizing its easily
available landmarks. Conditioned on the latent representation of appearance, the model generates
new images via the mapping from a target shape. There have been plenty of trails of disentangling [3]
and image synthesis [4] using VAE or CVAE. Such models are good at modeling spatial transforms
and naturally generating target images.

However, a common observation is that synthesized faces from these models lack diversity and
tend to be a ’mean’ face, which means that the estimated posterior distribution given the image is
not accurate and distinguishable enough. Using traditional CVAE[5, 4, 6] equipped with a fixed
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Gaussian prior, the learned conditional posteriors tend to collapse to a single mode which leads to the
synthesized image’s lack of details , especially training on outdoor datasets where identity variances
are larger. To improve the behavior of CVAE, we propose a novel approach using K Gaussian priors
in latent space z with different means and standard deviations, corresponding to different structural
characteristics. Specifically, we identify each mode as a cluster center by clustering landmarks into
K clusters. In our settings, each cluster tends to represent a facial characteristic, such as a side face,
closed eyes. Due to the intractability of Gaussian mixtures in VAE, we also propose a more flexible
prior which combines multiple gaussians into one equilibrium gaussian prior. If a given face contains
multiple characteristics such as a side-face laughing person with a wide-open mouth, our formulation
can better preserve these properties as well as providing better appearance details.

2 Problem Formulation

Face synthesis conditioned on appearance and pose code such as head pose, facial expressions relied
on the sturdy power of robust representations learned by generative models. For instance, face rotation
and frontalization[7, 8] series learn geometry and texture feature; for face expression animation[2]
and face editing[9], related priors such as action units(AU) or 3DMM[10] are utilized.

Let x to denote an input RGB image from dataset X . For all x ∈ X , overall face is assumed to
be driven by two latent factors, an appearance factor denoted as z which corresponds to identity,
lighting and other so-called invariant properties of a single face, and a shape factor denoted as c
which corresponds to variants including facial expression, head pose and so on. Our aim is: given an
image of x and its estimated shape ŷ, a representation of appearance z needs to be learned, where we
should be able to capture arbitrary faces given possible ĉ with appearance across z. To this end, our
image generator can be modeled to maximize p(x|c, z), conditioned on c and z. For the generator
itself, being able to generate another view (shape) of any given person and generate any person at a
fixed given view (shape) is required.

3 Methodology

Fig. 1 is an overview of our method, the clusters are clusters of facial geometry structure, represented
by sketches through interpolation between landmarks.

Conditional Variational Autoencoder In order to model the conditional distribution of p(x|c),
where x is the desired image and c is some representation of pose code of the input image. Thus, the
VAE power can be straightforwardly extended by conditioning the desired distribution on c: estimated
shape given. More specifically, by utilizing the conditional prior, potential semantic correlations and
pixel affinity are likely to be captured. For instance, a person who is laughing is likely to have his/her
eyes closed. Intuitively, by maximizing the lower bound on the conditional data-log-likelihood p(x|c),
we are able to train the encoder and decoder using gradient descent.

log p(x|ĉ) = log

∫
z

p(x, z|ĉ)dz ≥ Eq log
p(x, z|ĉ)
q(z|x, ĉ)

= Eq log
p(x|ĉ, z)p(z|ĉ)
q(z|x, ĉ)

(1)

In practice, following objective is typically used by representing the parameters for the encoder and
decoder using θ,φ respectively:

max
θ,φ

1

N

N∑
i=1

log pθ(x
i|zi, ci)−DKL[qφ(z|x, c), p(z|c)], s.t.∀i, zi ∼ qφ(z|x, c) (2)

Following reparametrization trick, the networks can be trained end-to-end using standard gradient
descent, by restricting the encoder distribution qφ(z, c) to be a zero-mean and standard-deviation
Gaussian.
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Figure 1: Overview of our method. In our setting, the priors are represented by landmarks.We used a
open-sourced 98-point landmarks detector in [11]. Not that ŷ in figure refer to c due to its ambiguity

3.1 Extending Capacity of Conditional VAE

As the stochastic objective of CVAE typically approximates the expectation using samples from the
approximate posterior. One observation of ’Vanilla’ CVAE trained on face feature disentangling is
that its heavy dependence on the choice on the prior p(x|c), which structures the learned appearance
latent space via KL-divergence Loss term in Eq. (2). While the choice of fixing the prior to a
zero-mean unit-variance Gaussian is empirical and computationally convenient, thus generated faces
have less diverse and a smoothed face. This phenomenon appears frequently when the model is
trained on outdoor faces series where sharp distinctness between different identities in terms of
lighting, skin, background and so on is present. A key factor is that given a simple distribution,
some peculiar identity features might be viewed as outliers. Clearly, the fixed form of prior brings
about less diversity and inadequate descriptive power. Thus, the prior should also be changed over
the external characteristics of a given face while being able to compute the KL divergence in a
closed form. Straightforwardly, by encouraging the latent z space to be composed of K clusters,
each corresponding to a different facial geometry characteristic, we can increase the representational
power. Given an image I , we assume that we can obtain a distribution with k modes denoted
by c(I) = (c1(I), c2(I), ...., ck(I)). In our work, we identify these modes with a set of different
views by clustering face sketches. Note that this formulation is general and can be applied to other
definitions of a cluster, including using face recognition networks or in an unsupervised fashion[12].

Gaussian Mixture Latent Space: By modeling p(z|c) as a Gaussian Mixture, for each cluster k
with weight ck, means µk and standard deviation σk:

p(z|c) =
K∑
k=1

ckN (z|µk, σ2
kI) (3)

As this form is not directly tractable to optimize Eq.(2) with GMM encoding, we thus need to
approximate the KL divergence term stochastically by drawing the cluster component according to
its cluster probability and then sample z from the selected Gaussian component. However, with the
sampling step, at test time we also need to sample a component and its corresponding distribution. A
limitation remains that using a defined clustering standard, if a face contains more than one cluster’s
characteristic, e.g. laughing and side face, it would still be conditioned on a single characteristic.

: Switch
: Weight Average

Figure 2: Illustration of difference between Gaussian Mixture and
Equilibrum Gaussian latent space mode.

Equilibrium Gaussian Latent Space: In order
to structure the z space to be accurate and con-
current. Motivated by [13], we propose a sim-
ple extended CVAE with an additive equilibrium
Gaussian prior. Given k representative face clus-
ters, each referring to one major facial structure
characteristic. If a face image contains several
characteristics with weights ck, defined by a nor-
malized cosine similarity with respective cluster
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center, each corresponding to its mean µk in z
latent space. p(z|c) can be formulated as

p(z|c) = N (z|
K∑
k=1

ckµk, σ
2I) (4)

where σ2I is a covariance matrix with σ2 =
∑K
k=1 c

2
kσ

2
k. The difference is shown in Fig 2. With the

extended Gaussian space in CVAE model, the KL-divergence should be computed over q(z|x, c) =
N(z|µ(x, c), σ2(x, c)I) . The KL-divergence can be derived to be:

DKL = log(
σ

σφ
)+

1

2σ2
Eqφ [(z−

K∑
k=1

ckµk)
2]− 1

2
= log(

σ

σφ
)+

σ2
φ + (µphi−

∑K
k=1 ckµk)

2

2σ2
− 1

2

(5)

For each cluster, we keep it fixed by randomly sampling means and same constant deviations for
simplicity.

4 Experiments

We conduct experiments and train our models on MultiPIE [14], CelebA [15]. Landmarks are
obtained using the pre-trained network from [11]. We first center crop the image to 256×256
for preprocessing. For the network itself, we use U-Net[16] for structure encoding and decoding,
where spatial information can be better preserved by skip connection. For training procedure,
Layer-sequential unit-variance initialization [17] and Adam optimizer [18] is used.

When testing, we are able to generate multiple poses and expressions represented by landmarks of a
single person. And the proposed model is evaluated on two tasks including:

Emotion Transfer By fixing one’s appearance property, transferring another person’s expression
onto a given face.

Conditional Pose Generation When given a single image, our model is expected to generate itself
under arbitrary pose and structure where appearance such as identity, lighting, and background are
preserved. We randomly choose three people, generating his/her faces by giving different structures
from themselves. The result is shown in Fig. 3

(a) Emotion Transfer (b) Conditional Image Generation

Figure 3: Results on MultiPIE and CelebA dataset. (a) Emotion transfer: leftmost row is are source
images, next three rows are generated faces where each person gets its emotion transferred driven
another’s (b) Conditional Pose Generation: Given 6 target poses, generate faces under target poses.
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5 Conclusion

We pose that the problem of synthesized image’s quality depends heavily on the capacity of existing
encoding space. By modeling so-called "z" space with an equilibrium Gaussian latent space, results
on face synthesis show that our approach can well preserve internal complex appearance using a
simple CVAE structure, thus being able to generate photo-realistic faces with diversity.

Further Work We would like to investigate more general formulations about the condition c, not
just using a simple structure clustering. They can be obtained using other visual features. Also,
relations between different clusters is also an interesting topic to investigate.
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