
Personalized Neural Embeddings for Collaborative
Filtering with Unstructured Text

Guangneng Hu, Yu Zhang
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong, China
{njuhgn,yu.zhang.ust}@gmail.com

Abstract

Collaborative filtering (CF) is the key technique for recommender systems. Pure CF
approaches exploit the user-item relational data (e.g., clicks, likes, and views) only
and hence suffer from the data sparsity issue. Luckily, items are usually associated
with unstructured text such as article abstracts and product reviews. We develop
a personalized neural embedding framework to exploit both user-item relational
interactions and words in unstructured text seamlessly. We learn such embeddings
of users, items, and words jointly, and predict the user preferences on items based
on these learned representations. The proposed framework, Collaborative Memory
networks (CoMem), estimates the probability that a user will like an item by two
terms, behavior factors and semantic factors. On two real-world datasets, CoMem
shows better performance than state-of-the-art.

1 Introduction
Recommender systems are widely used in various domains and e-commerce platforms, such as to
help consumers buy products at Amazon, watch videos on Youtube, and read articles on Google
News. They are useful to alleviate the information overload and improve user satisfaction. Given
the history records of consumers such as the product transactions and movie watching, collaborative
filtering (CF) is among the most effective approaches based on the simple intuition that if users rated
items similarly in the past then they are likely to rate items similarly in the future [18].

The history records include both implicit (e.g., purchase and clicks) and explicit (e.g., likes/dislikes
and ratings) feedback which can be represented as a user-item interaction matrix. Usually, the
observed user-item interactions are partial with a large portion remaining not recorded. The goal
of recommendation is to predict the user preferences on the missing item interactions. This setting
requires to complete the partial observed rating matrix. Matrix factorization (MF) techniques which
can learn the latent factors for users and items are the main cornerstone for CF [16, 13, 14]. It is
effective and flexible to be integrated with additional data sources. Recently, neural networks like
multilayer perceptron (MLP) are used to learn the interaction function from data [5, 4, 9] with the
power of learning highly nonlinear relationships between users and items. MF and neural CF exploit
the user-item behavior interactions only and hence suffer from the data sparsity and cold-start issues.

Items are usually associated with content information such as unstructured text, like the news articles
and product reviews. These additional sources which provide independent and diverse information
are essential for recommendation beyond user-item interaction data, and hence can alleviate the data
sparsity issue [7]. For application domains like recommending research papers and news articles,
the unstructured text associated with the item is its text content [21, 22, 1]. Other domains like
recommending products, the unstructured text associated with the item is its user reviews which
justify the rating behavior [15, 8, 10]. These methods adopt topic modelling techniques or neural
networks to exploit the item content leading to performance improvement.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

The typical way of exploiting text is to extract a feature vector from the text document by averaging the
word embeddings pre-trained from a large corpus such as Wikipedia [10, 8]. These methods separate
the extraction of text feature from the learning of user-item interaction and hence the two processes
can not benefit from each other. Others learn a topic vector using topic modelling [21, 15, 2] by
aligning behavior factors and topic factors with a link function such as softmax and offset. Recently,
neural networks are used to learn a representation from the text using autoencoders [22, 23], recurrent
networks [1], and convolutional networks [24, 3]. These methods treat different words in the document
as equal importance and do not match word semantics with the specific user.

In this paper, we propose a novel neural framework to exploit interaction relational data and content
information seamlessly. The proposed framework, Collaborative Memory networks (CoMem), fuses
semantic representations learnt from unstructured text with behavior representations learnt from
user-item interactions for effective estimation on user preferences’ items. CoMem estimates the
probability that a user will like an item by two factors. The behavior factor is to capture the
personalized preference of the user to the given item. And the semantic factor is to capture the
high-level representation attentively extracted from the unstructured text matching word semantics
with user preferences. These two effective representations are used to learn user preferences on items.

To model the behavior factor, we adopt the same approach as neural CF, which learns the user-item
nonlinear interaction relationships using a neural network (CFNet). To model the semantic factor, we
adopt memory networks to match word semantics with the specific user via the attention mechanism
inherent in the memory module (MemNet), determining which words are highly relevant to the user
preferences. As far as we know, CoMem is the first neural embedding model that integrates relational
interactions data with unstructured text by bridging neural CF and memory networks.

2 The CoMem Framework
Problem formulation For collaborative filtering with implicit feedback, there is a binary matrix
R ∈ Rm×n to describe user-item interactions where each entry rui ∈ {0, 1} is 1 (called observed
entries) if user u has an interaction with item i and 0 (unobserved) otherwise. Denote the set of
m-sized users by U and n items by I . Usually the interaction matrix is very sparse since a user u ∈ U
only consumed a very small subset of all items. Similarly for the task of item recommendation, each
user is only interested in identifying top-K items. The items are ranked by their predicted scores:
r̂ui = f(u, i|Θ), where f is the interaction function and Θ denotes model parameters.

For neural CF, neural networks (NNs) are used to parameterize f and learn it from interaction data:
f(xui|P ,Q, θf) = φo(φ1(xui)), where input xui = [P Txu,Q

Txi] ∈ Rd is concatenated from
embeddings of user and item, which are projections of their one-hot encodings xu ∈ {0, 1}m and
xi ∈ {0, 1}n by embedding matrices P ∈ Rm×d/2 and Q ∈ Rn×d/2, respectively (d = d/2 + d/2,
Θ = {P ,Q, θf}). Output and the hidden layer are computed by φo and φ1 in a feedforward NN.
Items are associated with unstructured text like reviews of products. For the document of item i by
user u, denote the words in it as dui = [wj]

l
j=1 where l = |dui| and words come from a vocabulary V .

Neural CF can be extended to leverage text and the interaction function has the form of f(u, i, dui|Θ).

Architecture The architecture for the proposed CoMem model is illustrated in Figure 1a. Besides the
layers of input, embedding, and output, CoMem consists of a CF network (CFNet) to learn nonlinear
interaction relationships between users and items and of a memory network (MemNet) to learn text
representations matching word semantics with specific users. The information flow in CoMem goes
from the input (u, i) to the output r̂ui through the following five layers: Input: (u, i) → 1u,1i

This module encodes user-item interaction indices. We adopt the one-hot encoding. It takes user
u and item i, and maps them into one-hot encodings 1u ∈ {0, 1}m and 1i ∈ {0, 1}n where only
the element corresponding to that index is 1 and all others are 0. Embedding: 1u,1i → xui This
module embeds one-hot encodings into continuous representations xu = P T

1u and xi = QT
1i

by embedding matrices P and Q respectively, and then concatenates them as xui = [xu,xi], to be
the input of following building blocks. CFNet: xui zui This module is a pure CF approach to
exploit user-item interaction data. It takes the continuous representations from the embedding module
and then transforms to a final behavior factor representation: zui = ReLU(Wxui + b), where
ReLU(x) = max(0, x) is the activation function and W and b are the weight and bias parameters.
MemNet: xui oui This module is to model the item content with the guidance of interaction data.
The item content is modelled by memories. It takes both representations from the embedding module
and the text associated with the corresponding user-item to a final semantic factor representation:

oui = MemNet(xui, dui), (1)

2

u i

User Item

Embedding P

Dot product

CFNet

MemNet

Words in

doc

Embedding C

Embedding A

Embedding Q

Joint Rep

Ƹ𝑟𝑢𝑖𝑟𝑢𝑖

ScoreTarget
Loss

softmax layer

𝒙𝑢𝑖

softmax

𝒎𝑗

𝑝𝑗

𝒄𝑗

W

ReLU

Copy

𝒛𝑢𝑖

sum

𝒙𝑢𝑖

o𝑢𝑖

𝑑𝑢𝑖

(a) Architecture.

10 25 50 75 100 150
Dimensionality of embedding

0.35

0.4

0.45

0.5

0.55

0.6

0.65

P
e

rf
o

rm
a

n
ce

@
1

0

Hit Ratio
NDCG
MRR

(b) Embedding.

0 20 40 60 80 100
Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L
o
ss

 a
n
d
 P

e
rf

o
rm

a
n
ce

Train loss
Valid Loss
Hit Ratio
NDCG

(c) Loss.

Figure 1: (a): Architecture of CoMem. (b): Embedding dimensionality. (c): Loss and performance

where MemNet denotes the computing function in the memory module (see Sec. 2.1). Output:
[zui,oui] → r̂ui This module predicts the score r̂ui for the given user-item pair based on the
concatenated representation of behavior factor and semantic factor from the CFNet and MemNet:
yui = [zui,oui]. The output is the probability that the input pair is a positive interaction. This
is achieved by a logistic layer: r̂ui = 1/(1 + exp(−hTyui)), where h is a parameter vector. We
adopt the binary cross-entropy loss: L = −

∑
(u,i)∈S rui log r̂ui + (1 − rui) log(1 − r̂ui), where

S = R+∪R− are the union of observed interaction matrix and randomly sampled negative examples.
This objective can be optimized by stochastic gradient descent (SGD) and its variants.

2.1 MemNet: Integrating Unstructured Text
To model the unstructured text, we use a memory network (MemNet) to attentively extract useful
content to match the word semantics with specific user where different words in the text document
have different weights in the semantic factor. Memory networks [19] are proposed to address the
question answering (QA) task where memories are a short story and the query is a question related to
the text in which the answer can be reasoned by the network. We can think of the recommendation
with text as a QA: the question to be answered is to ask how likely a user prefers an item. And the
unstructured text is analogue to the story and the query is analogue to the user-item interaction.

Memory networks have been used in recommendation to model item content [11, 12], model users’
neighborhood [6], and learn latent relationships [20]. We use memory networks to attentively extract
important information from the text content via the attention mechanism which can match word
semantics with the specific user and determine which words are highly relevant to the user preferences.
Recall that a memory network has one internal memory matrix A ∈ R|V|×d where d is the dimension
of each memory slot. And another external memory matrix C is the same dimensions as A. Given
a doc dui = [wj]

l
j=1 corresponding to the user-item (u, i) interaction, we form the memory slots

mj = [m
(u)
j ,m

(i)
j] ∈ Rd by mapping each word wj into an embedding vector with matrix A. We

get a preference vector au,i = [au,ij] corresponding to the document dui and the user-item interaction
(u, i), where each element encodes the relevance of the user u to the word wj ∈ dui given item i:

au,ij = xT
um

(u)
j + xT

i m
(i)
j , j = 1, ..., l. (2)

On the right hand of the above equation, the first term captures the matching between preferences of
user u and word semantics. The second term computes the support of item i to the words. Together,
the content-based addressing scheme can determine internal memories with highly relevance to
the specific user u regarding the words dui given item i. We then normalize it by the softmax
function: pu,ij = softmax(au,ij), to produce a probability distribution over the words in dui. The
neural attention mechanism allows the MemNet to focus on specific words while to place little
importance on other words which may be less relevant. We construct the high-level semantic factor
representations by interpolating the external memories with the attentive weights as the output of
the memory module: oui =

∑
j p

u,i
j cj , where external memory slot cj ∈ Rd is another embedding

vector for word wj ∈ dui by mapping it with matrix C.

3 Experiments
We evaluate on two real-world cross-domain datasets. The public Amazon dataset and the Cheetah
Mobile dataset provided by an internet company (see Appendix 5.1 for details). We adopt the leave-

3

Table 1: Results on Amazon. We mark best baselines with asterisks(*) and best results boldfaced.

Amazon Metric Methods Improve of CoMem vs.
BPRMF HFT TextBPR MLP LCMR CoMem MLP TextBPR LCMR

5
HR .0810 .1077 .1517 .2100* .2024 .2352 12.00% 55.04% 16.20%

NDCG .0583 .0815 .1208 .1486* .1451 .1646 7.61% 28.87% 9.63%
MRR .0509 .0729 .1104 .1283* .1263 .1413 6.19% 20.36% 7.41 %

10
HR .1204 .1360 .1777 .2836* .2836* .3186 12.34% 79.29% 12.34%

NDCG .0710 .0907 .1291 .1697* .1678 .1915 7.68% 35.11% 8.35%
MRR .0561 .0767 .1138 .1371* .1356 .1524 5.39% 21.72% 5.92%

20
HR .1821 .2782 .2268 .3820 .3951* .4221 10.49% 86.11% 6.83%

NDCG .0864 .1252 .1414 .1899 .1918* .2175 7.22% 33.55% 6.50%
MRR .0602 .0854 .1171 .1426* .1420 .1595 4.42% 18.69% 4.42%

one-out (LOO) evaluation [9] and use three ranking metrics: hit ratio (HR), normalized discounted
cumulative gain (NDCG), and mean reciprocal rank (MRR) (see Appendix 5.2). Our methods are im-
plemented using TensorFlow (see Appendix 5.3). We compare with five baselines (see Appendix 5.4)

as summarized in the following table:
Baselines Shallow method Deep method
Pure CF BPRMF [17] MLP [9]
Hybrid HFT [15], TextBPR [8, 10] LCMR [11], CoMem (ours)

3.1 Comparisons of Different Recommender Systems
Results are shown in Table 1 (and Table 3, see App. 5.6). We have some observations. First, CoMem
outperforms the neural CF method MLP on two datasets in terms of three ranking metrics. On
Amazon, CoMem obtains a large improvement in performance gain with relative 12.34% HitRa-
tio@10, 7.68% NDCG@10, and 6.19% MRR@5. On Mobile, CoMem obtains a large improvement
in performance gain with relative 4.98% HitRatio@5, and 4.16% NDCG@5, and 3.88% MRR@5.
Since the CFNet component of CoMem is a neural CF method, results show the benefit of exploiting
unstructured text to alleviate the data sparsity issue faced by the pure CF methods BPRMF and MLP.

Second, CoMem also outperforms the traditional hybrid methods HFT and TextBPR on the two
datasets in terms of three ranking metrics. On the Amazon dataset, CoMem obtains a significantly
large improvement in performance gain with relative 55.04% HitRatio@5, 28.87% NDCG@5, and
20.36%MRR@5. On the Mobile dataset, CoMem still obtains reasonably large improvements with
relative 17.52% HitRatio@10, 1.81% NDCG@10, and 1.88%MRR@10. Compared with traditional
hybrid methods which integrate the text using topic modelling or word embeddings, the results show
the benefit of integrating text information through memory networks (and exploiting the interaction
data through neural CF). In detail, the TextBPR extracts the text feature fi by averaging the word
embeddings ew in the document: fi = 1

|dui|
∑

w∈dui
ew. We can see that it treats different words in

the document as equal importance and does not match word semantics with the specific user.

Last, CoMem outperforms the neural hybrid method LCMR by a large margin on the Amazon dataset
with relative improvements of 16.20% HitRatio@5, 9.63% NDCG, and 7.41%MRR@5. CoMem
still obtains reasonabe improvements on the Mobile dataset with relative improvements of 3.14%
HitRatio@5, 2.85% NDCG, and 2.72% MRR. As we have revealed the relationships between CoMem
and LCMR in the theorem 1 (see Appendix 5.5), the design of CFNet of CoMem is more reasonable
than that of centralized memory module of LCMR. The results show the effectiveness of CoMem to
exploit unstructured text via the MemNet and the interaction data via the CFNet.

Analysis We first evaluate the effects of the dimensionality of the embedding space. The x-axis in
Figure 1b is the dimension of user/item and hence the dimensionality of input to CFNet and MemNet
is double since we adopt concatenation. It clearly indicates that the embedding should not be too
small due to the possibility of information loss and the limits of expressiveness. We next show
optimization curves of performance@10 and loss (averaged over all examples) against iterations on
the Mobile in Figure 1c. The model learns quickly in the first 20 iterations and improves slowly until
50, though training losses continue to go down and valid losses stabilize. The average time per epoch
of CoMem takes 68.1s and as a reference it is 34.5s for MLP using one NVIDIA TITAN Xp GPU.

4 Conclusion
It is shown that relational interactions can be effectively integrated with text content under a neural
embedding architecture to help improve recommendation performance. The proposed CoMem
model can attentively focus relevant words to match user preferences (semantic factor) and model
nonlinear relationships between users and items (behavior factor). In practice, CoMem shows better
performance than five baselines on two real-world datasets in terms of three ranking metrics.

4

References
[1] Trapit Bansal, David Belanger, and Andrew McCallum. Ask the gru: Multi-task learning for deep text

recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, pages 107–114.
ACM, 2016.

[2] Yang Bao, Hui Fang, and Jie Zhang. Topicmf: Simultaneously exploiting ratings and reviews for recom-
mendation. In AAAI, volume 14, pages 2–8, 2014.

[3] Rose Catherine and William Cohen. Transnets: Learning to transform for recommendation. In Proceedings
of the Eleventh ACM Conference on Recommender Systems, pages 288–296. ACM, 2017.

[4] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen
Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for recommender systems.
In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pages 7–10. ACM, 2016.

[5] Gintare Karolina Dziugaite and Daniel M Roy. Neural network matrix factorization. arXiv preprint
arXiv:1511.06443, 2015.

[6] Travis Ebesu, Bin Shen, and Yi Fang. Collaborative memory network for recommendation systems. SIGIR,
2018.

[7] Gayatree Ganu, Noemie Elhadad, and Amélie Marian. Beyond the stars: improving rating predictions
using review text content. In WebDB, 2009.

[8] Ruining He and Julian McAuley. Vbpr: Visual bayesian personalized ranking from implicit feedback. In
AAAI, pages 144–150, 2016.

[9] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collaborative
filtering. In Proceedings of the 26th International Conference on World Wide Web, pages 173–182.
International World Wide Web Conferences Steering Committee, 2017.

[10] Guang-Neng Hu and Xin-Yu Dai. Integrating reviews into personalized ranking for cold start recommenda-
tion. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 708–720. Springer,
2017.

[11] Guangneng Hu, Yu Zhang, and Qiang Yang. Lcmr: Local and centralized memories for collaborative
filtering with unstructured text. arXiv preprint arXiv:1804.06201, 2018.

[12] Haoran Huang, Qi Zhang, Xuanjing Huang, et al. Mention recommendation for twitter with end-to-end
memory network. In Proc. IJCAI, volume 17, pages 1872–1878, 2017.

[13] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In
Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 426–434. ACM, 2008.

[14] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems.
Computer, (8):30–37, 2009.

[15] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating dimensions
with review text. In Proceedings of the 7th ACM conference on Recommender systems, pages 165–172.
ACM, 2013.

[16] Andriy Mnih and Ruslan R Salakhutdinov. Probabilistic matrix factorization. In Advances in neural
information processing systems, pages 1257–1264, 2008.

[17] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. In Proceedings of the twenty-fifth conference on uncertainty
in artificial intelligence, pages 452–461. AUAI Press, 2009.

[18] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web,
pages 285–295. ACM, 2001.

[19] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In Advances in
neural information processing systems, pages 2440–2448, 2015.

[20] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Latent relational metric learning via memory-based attention
for collaborative ranking. In Proceedings of the 2018 World Wide Web Conference on World Wide Web,
pages 729–739. International World Wide Web Conferences Steering Committee, 2018.

5

[21] Chong Wang and David M Blei. Collaborative topic modeling for recommending scientific articles. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 448–456. ACM, 2011.

[22] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender systems.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1235–1244. ACM, 2015.

[23] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. Collaborative knowledge
base embedding for recommender systems. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 353–362. ACM, 2016.

[24] Lei Zheng, Vahid Noroozi, and Philip S Yu. Joint deep modeling of users and items using reviews for
recommendation. In Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining, pages 425–434. ACM, 2017.

5 Appendix

5.1 Appendix: Dataset

We evaluate on two real-world cross-domain datasets. The public Amazon (http://snap.stanford.
edu/data/web-Amazon.html) dataset has been widely used to evaluate the performance of collaborative
filtering approaches [15, 8]. We use the category of Amazon Men. The original ratings are from 1 to 5 where
five stars indicate that the user shows a positive preference on the item while the one stars are not. We convert
the ratings of 4-5 as positive samples. The dataset we used contains 56K positive ratings on Amazon Men. There
are 8.5K users and 28K Men products. We aim to improve the recommendation with the product reviews. The
data sparsity is over 99.7%. We filter stop words and use tf-idf to choose the top 8,000 distinct words as the
vocabulary [21]. The average number of words per review is 32.9. The second dataset, Mobile, is provided
by a large internet company, i.e., Cheetah Mobile (http://www.cmcm.com/en-us/). The information
contains logs of user reading news, the history of app installation, and some metadata such as news publisher
and user gender collected in one month in the US. We removed users with fewer than 10 feedbacks. For each
item, we use the news title as its text content. We filter stop words and use tf-idf to choose the top 8,000 distinct
words as the vocabulary. This yields a corpus of 612K words. The average number of words per news is less
than 10. The dataset we used contains 477K user-news reading records. There are 15.8K users and 84K news.
We aim to improve the news recommendation by exploiting news titles. The data sparsity is over 99.6%. The
statistics are summarized in Table 2.

5.2 Appendix: Evaluation protocols

For item recommendation task, the leave-one-out (LOO) evaluation is widely used and we follow the protocol
in [9]. That is, we reserve one interaction as the test item for each user. We determine hyper-parameters
by randomly sampling another interaction per user as the validation set. We follow the common strategy
which randomly samples 99 (negative) items that are not interacted by the user and then evaluate how well the
recommender can rank the test item against these negative ones.

Since we aim at top-K item recommendation, the typical evaluation metrics are hit ratio (HR), normalized
discounted cumulative gain (NDCG), and mean reciprocal rank (MRR), where the ranked list is cut off at
topK = {5, 10, 20}. HR intuitively measures whether the reserved test item is present on the top-K list, defined
as: HR = 1

|U|
∑

u∈U δ(pu ≤ topK), where pu is the hit position for the test item of user u, and δ(·) is the
indicator function. NDCG and MRR also account for the rank of the hit position, respectively defined as:
NDCG = 1

|U|
∑

u∈U
log 2

log(pu+1)
, and MRR = 1

|U|
∑

u∈U
1
pu
. NDCG provides a good discriminative power.

A higher value with lower cutoff indicates better performance.

Table 2: Datasets and Statistics.
Dataset Amazon Mobile
#Users 8,514 15,890
#Items 28,262 84,802

#Feedback 56,050 477,685
#Words 1,845,387 612,839

Rating Density (%) 0.023% 0.035%
Avg. Words per Item 65.3 7.2

6

http://snap.stanford.edu/data/web-Amazon.html
http://snap.stanford.edu/data/web-Amazon.html
http://www.cmcm.com/en-us/

5.3 Appendix: Implementation details

For BPRMF, we use LightFM’s implementation which is a popular CF library. For HFT and TextBPR, we
use the code released by their authors. The word embeddings used in the TextBPR are pre-trained by GloVe.
For latent factor models, we vary the number of factors from 10 to 100 with step size 10. For MLP, we use
the code released by its authors. The LCMR model is similar to our CoMem model and thus implemented in
company. Our methods are implemented using TensorFlow. Parameters are randomly initialized from Gaussian
N (0, 0.012). The optimizer is Adam with initial learning rate 0.001. The size of mini batch is 128. The ratio of
negative sampling is 1. The MLP follows a tower pattern, halving the layer size for each successive higher layer.
Specifically, the configuration of hidden layers in the base MLP network is [64→ 32→ 16→ 8] as reference
in the original paper. The dimension of embeddings of users and items is both default 75 (and hence d = 150).

5.4 Appendix: Baselines

BPRMF, Bayesian personalized ranking [17], is a state-of-the-art latent factor model based on matrix factor-
ization and pair-wise loss. It learns on the target domain only. HFT, Hidden factors and hidden Topics [15],
adopts topic distributions to learn latent factors from text reviews. HFT exploits text content through topic
modelling techniques. It is a hybrid method. TextBPR extends the basic BPRMF model by integrating text
content. TextBPR learns text factors from the text features which are pre-extracted using word embeddings.
It has two implementations, the VBPR model [8]1 and the TBPR model [10] which are the same in essence
in terms of modeling equations. MLP, multilayer perceptron [9], is a neural CF approach which learns the
nonlinear interaction function using neural networks. It is a deep model learning on the target domain only.
LCMR, Local and Centralized Memory Recommender [11], is a deep model for collaborative filtering with
unstructured Text. Its local memory module is similar to our MemNet. Its centralized memory module is inferior
to our CFNet as we have analyzed in Theorem 1 and will be demonstrated in the experiments. This is a deep
hybrid method.

5.5 Appendix: Connections to Existing Approaches

We reveal the relations between the proposed model and two existing approaches including matrix factorization
(MF) and a neural hybrid filtering method (LCMR).

We firstly show that the CFNet of CoMem generalizes matrix factorization.

Let P Txu be that of latent user factors xu in MF, and QTxi be that of latent item factors xi in MF. MF
computes the predicted score by r̂ui = xu

Txi. We replace the concatenation in the embedding module with
element-wise multiplication:

xui = (P Txu)� (QTxi). (3)

It requires that the dimensions of latent features of users and items are the same in this case (denoted as d). We
have one fixed weight W ≡ 1 which is a d-dimensional vector of all 1-s and the bias b ≡ 0 is all 0-s. And we
do not perform nonlinear ReLU activation and insted use the identity mapping. In this way, the prediction is the
same whatever it is computed by MF or CFNet of CoMem.

This allows CoMem to have the nonlinear modelling power beyond the standard matrix factorization and mimic
a class of factorization models, e.g., 2-way factorization machines. As we will see in the experiments, CoMem
outperforms MF methods on real-world datasets.

We now show that the CoMem is a more reasonable architecture design than an existing neural hybrid filtering
method.

Theorem 1 CoMem and LCMR [11] have the same function by replacing the activation ReLU with softmax in
the CFNet.

Proof Since the input, embedding, MemNet, and output layers of both CoMem and LCMR are the same, we
only need to show that the CFNet of CoMem have the same function with the centralized memory blocks in
LCMR. Assume that there is only one hop centralized memory block in LCMR (If there are multi-hop, we can
prove it by induction).

Denote the input as x ∈ Rd1 and the output as y ∈ Rd2 . Our CFNet has two hidden layers L1 and L2, which are
called a pair P = {L1,L2}, and the corresponding connection matrices are W1 ∈ RN×d1 and W2 ∈ Rd2×N

where N is the number of units in the first layer L1. Then the output of layer L1 is o = W1x. After a softmax
activation, the input to layer L2 is a = Softmax(o) and the final output y = W2a.

For the LCMR, it has one building block B = {A, C} which consists of key and value memoriesA and C, where
dimensions A ∈ RN×d1 and C ∈ RN×d2 are compatibility with the input and output, respectively (where

1Replace the pre-extracted image features with the word embeddings as the input.

7

Table 3: Results on Mobile. Best baselines are marked with asterisks(*) and best results are boldfaced.

Mobile Metric Methods Improve of CoMem vs.
BPRMF HFT TextBPR MLP LCMR CoMem MLP TextBPR LCMR

5
HR .4380 .4966 .4948 .5380 .5476* .5648 4.98% 14.14% 3.14%

NDCG .3971 .3617 .4298* .4121 .4189 .4345 4.16% 0.95% 2.85%
MRR .3606 .3175 .3826* .3702 .3762 .3911 3.88% 1.72% 2.72 %

10
HR .4941 .5580 .5466 .6176 .6311* .6424 4.02% 17.52% 1.79%

NDCG .4182 .4093 .4499* .4381 .4460 .4598 3.51% 1.81% 2.19%
MRR .3694 .3365 .3913* .3810 .3874 .4016 3.34% 1.88% 2.25%

20
HR .5398 .6547 .6123 .6793 .6927* .6952 2.34% 13.53% 0.36%

NDCG .4316 .4379 .4682* .4529 .4619 .4732 2.99% 0.82% 1.63%
MRR .3730 .3445 .3958* .3851 .3918 .4053 2.97% 1.55% 1.95%

the size of memories is N). The attention weights a are firstly computed by o = Ax and then normalized
by softmax function a = Softmax(o) to be a simplex vector. The output is a sum over the values weighted by
attentive weights y = CTa. We can see that if we let A = W1 and C = W T

2 , then the learning functions of
CoMem and LCMR are the same.

It seems unusual to use a softmax function mapping between two hidden layer connections. The values would
be fairly small causing a vanishing gradient since it would be normalized to a probability distribution. A ReLU
function would typically be used in this case. As a result, we can expect that the CoMem is a more reasonable
architecture than LCMR, empirically demonstrated in the experiments.

5.6 Appendix: Results on Cheetah Mobile Dataset

Results on Cheetah Mobile dataset is shown in Table 3.

8

	Introduction
	The CoMem Framework
	MemNet: Integrating Unstructured Text

	Experiments
	Comparisons of Different Recommender Systems

	Conclusion
	Appendix
	Appendix: Dataset
	Appendix: Evaluation protocols
	Appendix: Implementation details
	Appendix: Baselines
	Appendix: Connections to Existing Approaches
	Appendix: Results on Cheetah Mobile Dataset

